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Abstract 
Septic myocardial injury is a common complication of severe sepsis, which occurs in about 50% of 
cases. Patients with this disease may experience varying degrees of myocardial damage. Annexin-
A1 short peptide (ANXA1sp), with a molecular structure of Ac-Gln-Ala-Tyr, has been reported to 
exert an organ protective effect in the perioperative period by modulating sirtuin-3 (SIRT3). 
Whether it possesses protective activity against sepsis-induced cardiomyopathy is worthy of study. 
This study aimed to investigate whether ANXA1sp exerts its anti-apoptotic effect in septic 
myocardial injury in vitro and in vivo via regulating SIRT3. In this study, we established in vivo and 
in vivo models of septic myocardial injury based on C57BL/6 mice and primary cardiomyocytes by 
lipopolysaccharide (LPS) induction. Results showed that ANXA1sp pretreatment enhanced the 
seven-day survival rate, improved left ventricular ejection fraction (EF), left ventricular fractional 
shortening (FS), and cardiac output (CO), and reduced the levels of creatine kinase-MB (CK-MB), 
cardiac troponin I (cTnI), and lactate dehydrogenase (LDH). Western blotting results revealed that 
ANXA1sp significantly increased the expression of SIRT3, Bcl-2, and downregulated Bax 
expression. TUNEL staining and flow cytometry results showed that ANXA1sp could attenuate the 
apoptosis rate of cardiomyocytes, whereas this anti-apoptotic effect was significantly attenuated 
after SIRT3 knockout. To sum up, ANXA1sp can alleviate LPS-induced myocardial injury by 
reducing myocardial apoptosis via SIRT3 upregulation. 
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Introduction 

Sepsis, one of the most common critical diseases in the intensive care unit, is often 
accompanied by myocardial injury caused by infection (Seymour et al., 2016). Septic myocardial 
injury can cause severe arrhythmias, cardiac insufficiency, cardiac shock, and other complications. 
Data showed that patients with sepsis accompanied by myocardial injury had a poor prognosis and 
high mortality (Beesley et al., 2018). Sepsis-induced myocardial injury is a non-ischemic disease 
that occurs in patients with sepsis. The main manifestations are left ventricular dilatation, decreased 
ventricular contractility, right ventricular dysfunction, or left ventricular (systolic or diastolic) 
dysfunction. The pathophysiology showed that the interstitium of cardiomyocytes was dominated 
by monocytes or macrophages, myocardial interstitial edema, increased interstitial collagen content, 
cytoplasmic vacuolization of cardiomyocytes, mitochondrial damage, and microvascular 
dysfunction (Hollenberg and Singer, 2021). At present, there is no effective treatment except 
antibiotic therapy, so it is particularly important to search for possible therapeutic methods and 
explore possible mechanisms from the pathophysiological and cellular levels. 

Mitochondria provide energy for the various life activities of the cell and are major cellular 
organelles present in most cells to produce energy and perform aerobic respiration. Numerous 
studies have shown that the regulation of mitochondrial biosynthesis, mitochondrial autophagy, and 
mitochondrial dynamics play a huge role in organ protection (Yu et al., 2020; Tang et al., 2021). 
Myocardial mitochondrial dysfunction is a key factor in sepsis (Wu et al., 2019). Like inflammatory 
responses, oxidative stress, abnormal energy metabolism, and intracellular calcium homeostasis, 
myocardial mitochondrial damage induces activation of apoptotic signaling pathways and induces 
apoptosis in cardiac myocytes (Zhang et al., 2017c). In lipopolysaccharide (LPS)-treated 
cardiomyocytes, the prolonged opening of mitochondrial membrane permeability conversion pores 
and phospholipid peroxidation of mitochondrial lipid cores induced by oxidative stress can lead to 
cytochrome C release and activation of apoptotic pathways (Szeto, 2014). The Bcl-2 protein family, 
compromised of both anti-apoptotic and pro-apoptotic members, is an important mitochondrial 
regulator during cardiomyocyte apoptosis (Wang et al., 2013). For example, rosuvastatin 
preconditioning reduces isoproterenol-induced myocardial injury by modulating the Bcl-2/Bax ratio 
(Sultan et al., 2022). Irbesartan regulates Bcl-2 and Bax expression to inhibit apoptosis in 
myocardial ischemia-reperfusion injury (Ren et al., 2019). Furthermore, Bcl-2 overexpression 
inhibits the innate apoptosis in rats with septic cardiomyopathy, preventing septic myocardial 
dysfunction (Lancel et al., 2005). Thus, restoration of the balance between Bcl-2 and Bax might 
protect against sepsis-induced myocardial apoptosis. 

Annexin-A1 (ANXA1), a Ca2+-regulated phospholipid-binding protein widely expressed in 
human tissues and cells(Purvis et al., 2019), is involved in physiopathological processes, including 
growth, development, inflammation, swelling, and neurodegenerative disease (Leslie, 2015, Chua 
et al., 2022). Also, ANXA1 can protect against cardiovascular diseases and myocardial injury (de 
Jong et al., 2017, Ansari et al., 2018). Reports state that small peptides derived from ANXA1 retain 
most of the effects of the full-length ANXA1 protein (Cardin et al., 2017; Yu et al., 2023). Since 
these peptides were constructed with an acetyl-blocked N-terminus, they exhibit stability and 
delayed proteolytic degradation (Gavins and Hickey, 2012). Annexin-A1 short peptide (ANXA1sp), 
a specific small tripeptide fragment of human ANXA1 developed by Dr. Zhang (Zhang et al., 2010), 
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exhibits similar biological effects to those of ANXA1 (Sheikh and Solito, 2018). ANXA1sp has 
been proven to have a strong cardioprotective protective effect in the perioperative period (Zhang, 
Ma, et al., 2017a). Furthermore, AC2-26, an ANXA1 mimetic peptide, exerts cardioprotective 
effects against sepsis-induced cardiomyocyte apoptosis (Zhang et al., 2018). Therefore, ANXA1sp 
might also exert anti-apoptotic effects on cardiomyocyte apoptosis in septic myocardial injury. 

Sirtuins are a family of NAD(+)-dependent deacetylases that regulate various physiological 
functions, from energy metabolism to stress responses (Dai et al., 2018). Accumulating evidence 
has proven that sirtuin-mediated inhibition of the NLRP3 inflammasome exerts protective effects 
on myocardial cells (Sun et al., 2020; Song et al., 2021; Yu et al., 2021). As a member of the sirtuin 
family, sirtuin-3 (SIRT3) can enhance the overall efficacy of the mitochondrial electron transport 
chain, preventing ROS production by deacetylating complexes I and III (Marcus and Andrabi, 2018). 
A previous report demonstrated that ANXA1sp exerts cardioprotective effects against 
exsanguinating cardiac arrest via SIRT3 activation (Ma et al., 2019). In addition, ANXA1sp-
mediated SIRT3 upregulation plays an anti-apoptotic role in ischemic kidney injury by improving 
mitochondrial function (Suliman et al., 2021). However, whether ANXA1sp can reduce 
cardiomyocyte apoptosis in sepsis-induced myocardial injury by regulating the mitochondrial 
apoptotic pathway via SIRT3 has not yet been studied. Here, we attempted to elucidate the anti-
apoptotic effects of ANXA1sp in septic myocardial injury and its association with SIRT3, thus 
providing new strategies for the treatment of septic myocardial injury in the future. 
 
Materials and methods 
Reagents 
ANXA1sp (Molecular Mass = 445.47 Da) synthesized by GenScript (Piscataway, USA) (Zhang, Ma, 
et al., 2017b) and LPS purchased from Sigma Aldrich were dissolved in 100% DMSO to prepare 
stock solutions. For the in vivo study, the stock solution of ANXA1sp was diluted in normal saline 
to a final concentration of 1 mg/ml; the stock solution of LPS was diluted in normal saline to a final 
concentration of 10 mg/ml. For the in vitro study, the stock solution of ANXA1sp was diluted in 
culture medium to a final concentration of 30 µM; the stock solution of LPS was diluted in culture 
medium to a final concentration of 1 µg/mL. 
 
Animal study 

SIRT3-KO male C57BL/6 mice (25-30 g, 8-10 weeks old) were purchased from Shanghai 
Model Organisms Center, Inc. Normal male C57BL/6 mice (25–30 g, 8-10 weeks old) were 
purchased from Changsha Tianqin Biotechnology Co., LTD. All C57BL/6 mice were maintained at 
Zunyi Medical University. 

Normal C57BL/6 mice were assigned to four groups: Control (n=20); LPS (n=20); LPS+NS 
(normal saline; n=10), and LPS+ANA (ANXA1sp; n=20). SIRT3-KO C57BL/6 mice were assigned 
to the LPS+SIRT3-KO (n=10) or the LPS+SIRT3-KO+ANA group (n=10). For LPS induction, each 
mouse was intraperitoneally injected with LPS (10 mg/kg). For ANXA1sp treatment, ANXA1sp 
was intraperitoneally injected (1 mg/kg) once a day for three days before LPS injection. These mice 
were kept and monitored for lethality every 24 h for seven days. The animal study was approved by 
the Experimental Animal and Use Ethics Committee of Zunyi Medical University (Approval No: 
(2020) 2-145). 
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Echocardiography 
Cardiac functions of mice from each group were examined by echocardiography 24 h after 

LPS induction. Mice were anesthetized with 1.5% isoflurane inhalation. Echocardiography was 
performed with a high-frequency echocardiography imaging system (Vevo2100, Canada). The left 
ventricular end�diastolic dimension (LVEDD), left ventricular end�systolic dimension (LVEDS), 
left ventricular end�diastolic volume (LVEDV), left ventricular end�systolic volume (LVESV), 
and cardiac output (CO) were detected. The left ventricular ejection fraction (EF) and left ventricular 
fractional shortening (FS) were calculated as follows: EF = LVEDV − LVESV/LVEDV × 100; FS 
= LVEDD − LVESD/LVEDD × 100. After echocardiographic assessment, all mice were sacrificed 
to collect serum samples and heart tissues for biochemical analysis and TUNEL staining. 
 
Biochemical analysis 

Serum samples were carefully collected from each group and stored at −80°C for subsequent 
analyses. Then, serum levels of lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), and 
cardiac troponin I (cTnI) were detected using corresponding commercial kits according to the 
manufacturer’s instructions. 
 
 TUNEL staining 

Briefly, heart tissues were fixed in formaldehyde, embedded in paraffin, and sectioned into 5 
µm slices. Next, heart tissue sections were heated in an oven at 60� for 15 min, dewaxed in xylene 
twice, and hydrated with ethanol. After digestion with proteinase K at 37� for 30 min, each section 
was washed three times with PBS and incubated with TUNEL staining solution (100 µl) at 37� for 
1h. Finally, the sections were washed three times with PBS and blocked with a DAPI anti-
fluorescence quencher. 

 
Isolation of primary cardiomyocytes 

Primary cardiomyocytes were isolated from SIRT3-KO and normal C57BL/6 mice as 
previously described (Ackers-Johnson et al., 2016). Briefly, SIRT3-KO and normal C57BL/6 mice 
were sacrificed to remove hearts. Next, the left ventricle of the heart was digested with EDTA buffer, 
perfusion buffer, and collagenase buffer. After digestion, the left ventricle was diced with forceps 
and mechanically dissociated by repeated pipetting. Then, the cell suspension was filtered through 
a strainer (100 µm) and settled by gravity for 20 minutes to collect cardiomyocytes. 

 
Primary cardiomyocyte culture and treatment 

The primary cardiomyocytes isolated from SIRT3-KO and normal C57BL/6 mice were 
suspended in DMEM supplemented with 10% FBS and cultured in a humified atmosphere (37°C; 
5% CO2) until reaching 75% confluence. Cardiomyocytes in early passages (up to passage 3) were 
used for further experiments. 

Cardiomyocytes isolated from normal C57BL/6 mice were assigned to the Control, LPS, and 
LPS+ANA groups. Cardiomyocytes isolated from SIRT3-KO C57BL/6 mice were assigned to the 
LPS+SIRT3-KO and LPS+SIRT3-KO+ANA groups. To imitate sepsis in vitro, cardiomyocytes 
were exposed to LPS (1 µg/mL) for 12h (Mou et al., 2021). For ANXA1sp treatment, 
cardiomyocytes were pretreated with ANXA1sp (30 µM) for 2 h before LPS induction. 
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Flow cytometry 
The apoptosis rate of cardiomyocytes was detected by flow cytometry. The cell suspension was 

centrifuged at 500 ×g for 5 min in each group. The supernatant was removed and the cell precipitate 
was suspended with 1 ml of 1×Annexin V Binding Buffer precooled at 4�. Next, 500 µL of cell 
suspension was placed into a flow cytometry tube, and 5 µL of FITC-Annexin V was added and 
incubated at 4� in the dark for 10 min. Then, 5 µL of Propidium Iodide was added and mixed for 5 
min. The apoptosis rate was detected by a flow cytometer (Gallios, Beckman Coulter, USA). 
 
Western blotting 

The Bicinchoninic acid (BCA) method was used to detect protein concentration according to 
the manufacturer’s instructions. Protein was transferred to a PVDF membrane and blocked with 5% 
skim milk at room temperature for 2 h, followed by incubation with anti-SIRT3 (cat. no. ab217319; 
dilution, 1:1,000; Abcam), anti-Bax (cat. no. #5023; dilution, 1:1000; Cell Signaling Technology), 
anti-Bcl-2 (cat. no. ab32124; dilution, 1:2000; Abcam), and anti-β-actin (cat. no. #3700; dilution, 
1:1,000; Cell Signaling Technology) antibodies overnight at 4°C. Next, it was incubated with goat 
anti-rabbit (cat. no. #98164; dilution, 1: 5,000; Cell Signaling Technology) secondary antibodies at 
room temperature for 2 h. Enhanced chemiluminescence was used to detect the results. The band 
was imaged with the Bio-rad Imaging System. 

 
Statistical analysis 

The results in our study are shown as mean ± standard error of the mean (SEM) and were 
analyzed by SPSS 19.0 software. The comparison between multiple groups was analyzed by one-
way analysis of variance and Tukey’s post-hoc test. The survival rate of mice was assessed using 
the Kaplan-Meier curve. P < 0.05 was considered statistically significant. 
 
RESULTS 
1. ANXA1sp improved cardiac function and myocardial injury markers in septic mice. 

To observe the effects of ANXA1sp on cardiac function and markers of myocardial injury in 
septic mice, mice were administered ANXA1sp and then subjected to LPS treatment. As illustrated 
by the Kaplan-Meier curve, ANXA1sp pretreatment significantly reversed the LPS-induced 
increase in the mortality rate of mice (Fig. 1A). In addition, the cardiac function of mice was 
detected by echocardiography (Fig. 1B; Table 1). It was shown that ANXA1sp partly abated the 
LPS-induced decline in EF, FS, and CO levels (Fig. 1C-E). Also, ELISA results revealed that the 
LPS-induced increase in myocardial injury markers (LDH, CK-MB, and cTnI) was also eliminated 
by ANXA1sp (Fig. 1F-H). In addition, ANXA1sp also reversed the LPS-mediated increase in the 
levels of pro-inflammatory cytokines (TNA-α, IL-1β, and IL-6) in myocardial tissues (Fig. 2A-C). 
Therefore, ANXA1sp improved sepsis-induced cardiac dysfunction and myocardial injury in mice. 
 
2. ANXA1sp attenuated cardiomyocyte apoptosis in vivo and upregulated SIRT3 expression.  

To observe the effect of ANXA1sp on apoptosis, TUNEL staining was used to calculate the 
apoptosis rate. As shown in Fig. 3A-B, LPS caused cardiomyocyte apoptosis in vivo, which was 
abated by ANXA1sp pretreatment. Similarly, ANXA1sp pretreatment reversed the LPS-induced 
increase in Bax levels and decrease in Bcl-2 levels. (Fig. 3C-E). In addition, LPS treatment reduced 
SIRT3 expression in cardiac tissues, which was revoked by ANXA1sp administration (Fig. 3C and 
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F). Taken together, ANXA1sp might reduce LPS-induced cardiomyocyte apoptosis in vivo by 
upregulating SIRT3 expression. 
 
3. ANXA1sp exerted myocardial protective effects through SIRT3 

Previous experiments have shown that SIRT3 plays an important role in cardiac protection. 
Therefore, we further investigated the role of SIRT3 in the protective effect of ANXA1sp against 
LPS-induced cardiac dysfunction and myocardial injury. After SIRT3 knockout, mice were also 
administered ANXA1sp and subjected to LPS treatment. ANXA1sp failed to protect against LPS-
induced cardiac dysfunction (Fig. 4A-D; Table 2) and myocardial injury (Fig. 3E-G) in SIRT3-
knockout mice. Besides, ANXA1sp hardly blocked the LPS-mediated increase in TNA-α, IL-1β, 
and IL-6 levels in myocardial tissues from SIRT3-knockout mice (Fig. 5A-C). Therefore, ANXA1sp 
might exert protective effects against cardiac dysfunction and myocardial injury in LPS-challenged 
mice by regulating SIRT3 expression. 
 
4. ANXA1sp attenuated cardiomyocyte apoptosis by upregulating SIRT3 

Next, the role of SIRT3 in the protective effect of ANXA1sp against LPS-induced cardiomyocyte 
apoptosis was examined. As shown in Fig. 6A, ANXA1sp pretreatment failed to reverse the LPS-
induced increase in the mortality rate of SIRT3-knockout mice. In addition, upon SIRT3 knockout, 
ANXA1sp could not reduce the LPS-induced cardiomyocyte apoptosis rate in vivo (Fig. 6B and C). 
Also, ANXA1sp failed to reverse LPS-induced changes in Bax and Bcl-2 levels or upregulate SIRT3 
expression in cardiac tissues from SIRT3-knockout mice (Fig. 6D-G). To sum up, ANXA1sp 
reduced cardiomyocyte apoptosis by upregulating SIRT3 expression in LPS-induced mice. 
 
5. ANXA1sp inhibited cardiomyocyte apoptosis by up-regulating SIRT3 in vitro. 
      To verify the cardioprotective effect of ANXA1sp in vitro, primary cardiomyocytes were 
extracted from the heart tissues of mice from each group and then subcultured. Cardiomyocytes 
were pretreated with ANXA1sp for 2 h and LPS for 12h. The apoptosis rate of cardiomyocytes was 
detected by flow cytometry. ANXA1sp pretreatment can reduce the LPS-induced apoptosis of 
cardiomyocytes; meanwhile, ANXA1sp failed to diminish the apoptosis rate of cardiomyocytes 
upon SIRT3 knockout (Fig. 7A-F). Therefore, ANXA1sp inhibited LPS-induced cardiomyocyte 
apoptosis by upregulating SIRT3 in vitro. 
 
Discussion 

In this study, we showed that (1) ANXA1sp improved myocardial injury in sepsis. (2) 
ANXA1sp upregulated SIRT3 and Bcl-2 expression and upregulated Bax expression, producing an 
anti-apoptotic effect. (3) Upon SIRT3 knockout, the anti-apoptotic effect of ANXA1sp was 
obviously weakened, indicating that SIRT3 was an anti-apoptotic target and ANXA1sp could reduce 
myocardial injury in sepsis by improving cardiomyocyte apoptosis through the SIRT3 target. 

Current research on septic myocardial injury contains both clinical and animal studies; however, 
it is very difficult to find effective drugs to treat myocardial injury in sepsis in the clinical setting 
(Meng et al., 2016). Therefore, attention has been turned to the exploration of mechanisms in animal 
models with the aim of finding possible drugs to address this challenge. Accumulating evidence 
suggests that drugs produce protective effects against septic myocardial injury by regulating 
apoptosis-related signaling pathways (Xu et al., 2020a; Zhou et al., 2020), suggesting that anti-
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apoptotic drugs might be promising candidates to block the development of septic myocardial injury. 
Consistent with previous findings, our study revealed that ANXA1sp enhanced the seven-day 
survival rate of LPS-challenged mice and protected against cardiac dysfunction and myocardial 
apoptosis by upregulating Bcl-2 expression and downregulating Bax expression. 

Studies have demonstrated that the sirtuin family can exert antisepsis effects through the 
deacetylation of inflammation-related cytokines, oxidative stress-related factors, and proapoptotic 
factors (Sun et al., 2021). As an evolutionarily conserved nicotinamide adenine dinucleotide-
dependent (NAD+) histone deacetylation protein mainly localized in mitochondria, SIRT3 can 
maintain mitochondrial activity by regulating processes such as oxidative stress, energy metabolism, 
mitochondrial membrane permeability, and mitochondrial homeostasis (Ansari et al., 2017). As a 
mitochondrial regulator involved in apoptosis regulation, SIRT3 upregulation can inhibit apoptosis 
and reduce cell damage. For instance, melatonin alleviates autophagy and apoptosis by upregulating 
SIRT3 (Wang et al., 2021). Stilbene glycosides upregulate SIRT3 and inhibit neuronal apoptosis in 
ischemic stroke (Li et al., 2021), SIRT3 protects pancreatic β cells from endoplasmic reticulum 
stress-induced apoptosis and dysfunction (Zhang et al., 2016). 

SIRT3 exerts protective effects against cardiac disorders, including septic myocardial injury 
(Xin & Lu, 2020). Much evidence indicates that SIRT3 is a potential target for the treatment of 
septic cardiomyopathy (Zheng et al., 2017; Xu et al., 2020b). Recent research has also proven that 
natural biomolecules, including Quercetin (D’Aria et al., 2017), may exert potential 
cardioprotective roles by activating SIRT3(Chen et al., 2021; Li et al., 2022; Liu and Zhao, 2022). 
In this study, ANXA1sp reversed LPS-induced SIRT3 downregulation in normal C57BL/6 mice. 
After LPS induction, SIRT3-knockout mice exhibited a reduced seven-day survival rate but 
aggravated cardiac dysfunction and myocardial apoptosis compared with normal mice. In addition, 
ANXA1sp pretreatment failed to upregulate SIRT3 expression or improve the seven-day survival 
rate, cardiac dysfunction, and myocardial apoptosis in SIRT3-knockout mice. Taken together, 
ANXA1sp protected against cardiac dysfunction and myocardial apoptosis in septic 
cardiomyopathy by upregulating SIRT3 expression. 

However, this study has some limitations. We have not observed how ANXA1sp enters the 
cells or how it interacts with them to play an anti-apoptotic role. In the future, we will design more 
reasonable experiments to clarify this process. Besides, future studies will identify additional targets 
for ANXA1sp in sepsis-induced myocardial injury. 

All in all, in our study, LPS is used to simulate the microenvironment of cardiomyocytes in 
septic cardiomyopathy. LPS insult can reduce the expression of SIRT3, while ANXA1sp 
pretreatment can promote SIRT3 and Bcl-2 expression and inhibit Bax expression. However, upon 
SIRT3 knockout, the protective effect of ANXA1sp was not obvious, suggesting that ANXA1sp 
exerts this protective effect by targeting SIRT3. This study highlights a promising drug and a 
potential target for the treatment of sepsis-induced myocardial injury. 
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Figure Legends 

Figure 1. The seven-day survival rate of mice treated with LPS and the effect of ANXA1sp on 

cardiac function and myocardial injury markers in septic mice. (A) Mice were divided into 

Control (n=10), LPS (n=10), LPS+NS (n=10), and LPS+ANA (n=10) groups. The survival rate of 

mice was evaluated using Kaplan-Meier curves. (B) Representative left ventricular 

echocardiograms of mice from each group. (C-E) EF, FS, and CO of mice from each group. (F-H) 

ELISA for LDH, CK-MB, and cTnI in the blood of mice from each group. NS for normal saline, 

ANA for ANXA1sp, n=3, *P < 0.05, **P< 0.01, ***P < 0.001, ****P < 0.0001, ns for no significance. 

 

Figure 2. ANXA1sp ameliorated myocardial inflammatory responses in septic mice. (A-C) 

ELISA for TNA-α, IL-1β, and IL-6 levels in myocardial tissues from each group. NS for normal 

saline, ANA for ANXA1sp, n=3, *P < 0.05, **P< 0.01, ***P < 0.001, ****P < 0.0001, ns for no 

significance. 

 

Figure 3. ANXA1sp upregulated SIRT3 and attenuated cardiomyocyte apoptosis. (A and B) 

TUNEL staining for cardiomyocyte apoptosis in vivo. (C-F) Relative expression levels of Bcl-2, 

Bax, and SIRT3 in cardiac tissues by Western blotting. NS for normal saline, ANA for ANXA1sp, 

n=3, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns for no significance. 
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Figure 4. ANXA1sp exerted myocardial protective effects via SIRT3. (A) Mice were divided 

into Control (n=10), LPS (n=10), LPS+NS (n=10), LPS+ANA (n=10), LPS+SIRT3-KO, and 

LPS+SIRT3-KO+ANA groups. Representative left ventricular echocardiograms of mice from each 

group. (B-D) EF, FS, and CO of mice from each group. (E-G) ELISA for LDH, cTnI, and CK-MB 

in blood samples of mice from each group. NS for normal saline, ANA for ANXA1sp, SIRT3-KO for 

SIRT3 knockout, n=3, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns for no significance. 

 

Figure 5. ANXA1sp alleviated myocardial inflammatory responses via SIRT3. (A-C) ELISA 

for TNA-α, IL-1β, and IL-6 levels in myocardial tissues from each group. NS for normal saline, 

ANA for ANXA1sp, SIRT3-KO for SIRT3 knockout, n=3, *P < 0.05, **P < 0.01, ***P < 0.001, 

****P < 0.0001, ns for no significance. 

 

Figure 6. ANXA1sp attenuated cardiomyocyte apoptosis by upregulating SIRT3. (A) The 

survival rate of mice was evaluated using Kaplan-Meier curves. (B and C) TUNEL staining for 

cardiomyocyte apoptosis in vivo. (D-G) Relative protein levels of Bcl-2, Bax, and SIRT3 in heart 

tissues from each group by Western blotting. NS for normal saline, ANA for ANXA1sp, SIRT3-KO 

for SIRT3 knockout, n=3, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns for no 

significance. 

 

Figure 7. ANXA1sp inhibited cardiomyocyte apoptosis by upregulating SIRT3 in vitro. (A-F) 

The apoptosis of primary cardiomyocytes in each group was detected by flow cytometry. NS for 

normal saline, ANA for ANXA1sp, SIRT3-KO for SIRT3 knockout, n=3, *P < 0.05, **P < 0.01, 

***P < 0.001, ****P < 0.0001, ns for no significance. 
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Table 1. Effects of ANXA1sp on mouse cardiac function. 
 Control LPS LPS+NS LPS+ANA 
LVEDD (mm) 4.22 ± 0.35 3.89 ± 0.19 4.02 ± 0.18 4.12 ± 0.09 
LVEDS (mm) 2.03 ± 0.17 2.89 ± 2.15∗ 2.91 ± 2.15 2.31 ± 0.10∗ 
LVEDV (µl) 79.85 ± 2.35 68.15 ± 1.82∗ 67.3 ± 2.55 76.8 ± 1.32∗ 
LVESV (µl) 13.85 ± 1.56 28.91 ± 3.21∗ 29.12 ± 2.71 18.2 ± 2.15∗ 

 
 
Table 2. SIRT3 is involved in ANXA1sp-mediated improvement of cardiac function in LPS-
induced mice. 

 Control LPS LPS+ANA LPS+SIRT3-KO LPS+SIRT3-
KO+ANA 

LVEDD 
(mm) 

4.23 ± 0.27 3.92 ± 1.09 4.12 ± 0.12 3.99 ± 0.55 4.02 ± 0.22 

LVEDS 
(mm) 

2.09 ± 0.35 2.87 ± 2.24∗ 2.31 ± 0.32∗ 3.15 ± 0.11∗ 3.21 ± 1.05 

LVEDV (µL) 79.58 ± 1.16 67.88 ± 
1.37∗ 

77.9 ± 1.51∗ 61.5 ± 0.16∗ 62.1 ± 1.81 

LVESV (µL) 14.13 ± 2.37 29.12 ± 
2.15∗ 

17.9 ± 2.22∗ 35.8 ±2.32∗ 34.6 ±2.27 
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