Death-associated protein kinase 1 correlates with podocyte apoptosis and renal damage and can be mediated by miR-361

Authors: Guang-jun Wu, Hong-biao Zhao and Xiao-wei Zhang

DOI: 10.14670/HH-18-358
Article type: ORIGINAL ARTICLE
Accepted: 2021-07-16
Epub ahead of print: 2021-07-16
Death-associated protein kinase 1 correlates with podocyte apoptosis and renal damage and can be mediated by miR-361

Running title: miR-361/DAPK1 in renal damage.

Guang-jun Wu 1, Hong-biao Zhao 2, Xiao-wei Zhang 3,*

1 Department of Traditional Chinese Medicine; 2 Department of Peripheral Vascular; 3 Department of Nephrology; Linyi Central Hospital, No.17 Jiankang Road, Linyi City 276400, Shandong Province, China.

Corresponding author: Dr. Xiao-wei Zhang, Department of Nephrology; Linyi Central Hospital, No.17 Jiankang Road, Linyi City 276400, Shandong Province, China.

E-mail: pp_zhang11@21cn.com

Tel: +86-15269967579.
Abstract

Background: Herein, we aimed to determine whether DAPK1 and its post-transcriptional regulator miR-361 were implicated in high glucose (HG)-induced podocyte injury and renal damage in db/db mice.

Materials and methods: Podocytes were incubated with normal glucose (NG; 5 mM) or HG (30 mM). Podocyte apoptosis was evaluated using TUNEL staining. Lentiviral-delivered specific short hairpin RNA (shRNA) was designed to silence DAPK1 expression in podocytes. miR-361 agomir was administrated by tail intravenous injection in db/db diabetic mice to investigate the renoprotection of miR-361 in vivo.

Results: Exposure of podocytes to HG led to a significant increase in DAPK1 mRNA and protein levels and a decrease in miR-361 expression levels. Knockdown of DAPK1 attenuated HG-triggered growth inhibition, apoptosis, DNA damage and cell membrane damage in podocytes. Mechanically, DAPK1 was a direct target of miR-361. Transfection with miR-361 mimics into podocytes resulted in a significant decrease in the DAPK1 protein expression level. In addition, HG-induced the up-regulation of the DAPK1 protein expression level in podocytes was restrained by miR-361 mimics transfection. Intriguingly, overexpression of DAPK1 in HG-stimulated podocytes muted miR-361-mediated cytoprotection, including anti-apoptosis, resistance to DNA and membrane damage. In vivo, overexpression of miR-361 protected against hyperglycemia-induced podocyte loss, tubular atrophy and interstitial fibrosis in the kidney of db/db mice. Moreover, overexpression of miR-361 inhibited the protein expression of DAPK1 in the kidney of db/db mice.
Conclusion: Our research presented a novel mechanism of HG-induced podocyte damage or renal lesion, supporting the miR-361/DAPK1 signaling pathway that could be used as a potential therapeutic target for the treatment of DN.

Keywords: miR-361; DAPK1; podocyte; high glucose; apoptosis
1 Introduction

Diabetic nephropathy (DN) as one of the most common microvascular complications in the progression of diabetes mellitus is a major pathogenic factor of end-stage renal disease (ESRD), which is characterized by reduced glomerular filtration rate (GFR), glomerulosclerosis and tubulointerstitial fibrosis (Roscioni et al., 2014; Chen et al., 2018). Accumulating evidence corroborates that podocyte dysfunction and damage in response to hyperglycemia stimulation contribute to microalbuminuria, which is the earliest clinical manifestation of DN, and subsequent loss of kidney function and GFR (Dai and Liu, 2017; Zhan et al., 2018). Nevertheless, increasing evidence substantiates that multiple signaling pathways, including adenosine monophosphate-activated kinase signaling pathways, wnt/β-catenin and mammalian target of rapamycin/autophagy pathway, are implicated in the process of podocyte depletion (Dai and Liu, 2017). However, the molecular mechanisms underlying high glucose-triggered podocyte dysfunction and renal damage have not been completely elaborated.

Death-associated protein kinase 1 (DAPK1) is a member of the serine/threonine kinases family and is imperative for a wide range of pathological processes, including inhibition of cancer growth, neurodegeneration and autophagy (Singh et al., 2016). Of interest, DAPK1 is also identified as a pro-apoptotic mediator of multiple cell death, including cancer cells, neuronal cells, neutrophil and epithelial cells (Thongchot et al., 2018; Zhou et al., 2018; Cui et al., 2019). However, up to now, its function and underlying molecular mechanism remain elusive in podocyte apoptosis and renal damage.
microRNAs (miRs) play vital roles by means of binding with the 3’-untranslated region (3’-UTR) of the target gene to degrade mRNA or post-transcriptionally repress its protein translation (Baek et al., 2008). Accumulating research highlights miRs as the potential targets for the treatment of various diseases, including DN. For example, miR-23b mitigates albuminuria and renal fibrosis in a mouse model of diabetic nephropathy via repressing Ras GTPase-activating protein SH3 domain-binding protein 2 (Zhao et al., 2016). Simultaneously, miR-23b expression is inhibited in cultured kidney cells exposed to high glucose (Zhao et al., 2016). Overexpression of miR-29a elevates nephrin levels, improves podocyte homeostasis and renal function, and alleviates glomerular fibrosis and inflammation reaction in diabetic mice (Lin et al., 2014). In the present study, our results revealed that miR-361 had the ability to attenuate high glucose-evoked podocyte dysfunction and renal pathological change, including growth inhibition, apoptosis, DNA damage, cell membrane damage, tubular atrophy and interstitial fibrosis. miR-361 is validated as a multifunctional gene that is implicated in inflammation, cell apoptosis, cognitive impairment and tumorigenesis via mediating multiple target genes (Mendes-Silva et al., 2016; Xu and Dong, 2019; Huang et al., 2020). However, the biological effects of miR-361 on high glucose-induced podocyte and renal injuries are still unclear. Furthermore, we further determined whether miR-361 could target DAPK1 to improve high glucose-potentiated podocyte injury and renal damage.
2 Material and methods

2.1 Cell culture

Mouse renal podocytes (cat. no: 3111C0001CCC000230) were obtained from the National Infrastructure of Cell Line Resource (http://www.cellresource.cn; Beijing, China). Differentiated podocytes were maintained in RPMI-1640 (Invitrogen, USA) containing high glucose (HG, 30 mM D-glucose) or normal glucose (NG, 5 mM D-glucose) supplemented with 10% FBS (Invitrogen, Thermo Fisher Scientific, Inc., USA) at 37°C in a humidified incubator (Thermo Fisher Scientific, Inc., USA), 5% CO2, 95% air atmosphere.

2.2 Cell viability measurement

The cell counting kit-8 (CCK-8) proliferation assay (Dojindo, Japan) was used to evaluate cell viability in response to HG or DAPK1 knockdown as previously described (Liang et al., 2017).

2.3 TUNEL assay

After exposure to podocytes with high glucose, cell apoptosis was evaluated using TUNEL (Beyotime Institute of Biotechnology, Haimen, China) assay according to the manufacturer’s instructions. TUNEL positive cells were mounted under a fluorescence microscope (BX53, Olympus, Japan; magnification, 200x). In brief, cells were fixed with 4% paraformaldehyde for 15 min at room temperature. The nerve cells were stained with TUNEL (50 µL) at 37°C for 60 min. Subsequently, cells were incubated with 100 µL DBA (0.5 mg/mL) at room temperature for 15 min. Cell nuclei were stained with hematoxylin staining solution (1%) at room temperature for 5 sec.
2.4 Cell transfection

sh-DAPK1 was constructed to target DAPK1 by shRNA design tools (http://rnaidesigner.thermofisher.com/rnaexpress/). Lentiviral-delivered specific sh-DAPK1 and sh-Con plasmids were packaged by Hanbio (Shanghai, China). The sequences of miR-Con (5’-ACGUGGUGUAUAUUGGCCCCGA-3’) and miR-361 (5’-UUACAGCAAUCUCCAGGGGUAC-3’) were obtained using online predict software miRanda-mirSVR (http://www.microrna.org) and were synthesized by RiboBio (Guangzhou, China). The wild-type (WT) or mutant-type (Mut) 3’-UTR of DAPK1 were inserted into the multiple cloning sites of the luciferase-expressing pMIR-REPORT vector (Ambion; Thermo Fisher Scientific, Inc.). DAPK1 overexpressed plasmids (vector-DAPK1) were purchased from GeneCopoeia, Inc. (Rockville, MD, USA). All of the vectors were transfected into podocytes using Lipofectamine 2000 (Invitrogen; Thermo Fisher Scientific, Inc., Waltham, MA, USA) according to the manufacturer’s protocols.

2.5 RT-qPCR

RT-qPCR for miRs: total RNA was extracted using the miRNeasy Mini Kit (Qiagen, Inc., Valencia, CA, USA). TaqMan® RT kit and TaqMan® MicroRNA assay (Applied Biosystems) were used to detect miR-361 expression levels using Applied Biosystems 7300 Real-Time PCR System (Thermo Fisher Scientific, Inc.). miR-361 expression levels were calculated using the 2^(-ΔΔCt) method, as described previously (Livak and Schmittgen, 2001), and U6 was used as an internal control.

RT-qPCR for mRNA: Moloney murine leukemia virus reverse transcriptase (Invitrogen) was used to synthesize cDNA with 2 µg of total RNA according to the manufacturer’s protocol. Real-time PCR was performed using Applied Biosystems 7300 System with the TaqMan Universal PCR Master Mix (Thermo Fisher Scientific, Inc.). mRNA expression levels were
calculated using the $2^{-\Delta\Delta Ct}$ method (Livak and Schmittgen, 2001), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) served as the internal control. The primers were used as follows: DAPK1: Forward 5'-CGAGGTGATGGTGATGGGATTG-3' and Reverse 5'-CTGTGCTTTGGCTGGTGG-3'; TNF-α: forward 5'-CTACCTTGGCCTCCTCTTT-3' and reverse 5'-GAGCAGAGGTCAGTGATG-TAG-3'; IL-1β: Forward 5'-ATGGGCAACCACCTACCTATTT-3' and Reverse 5'-GTTCAGAGAGCTGCTAATG-3'; IL-6: forward 5'-GCACCGTCAAGCTGGAAC-3' and reverse 5'-TGGTGAAAGACGCCAGTGGA-3'.

2.6 Western blotting

Western blotting procedures were performed as previously described (Yu et al., 2018). The primary antibodies for DAPK1 (cat. no: sc-136286; dilution: 1: 1,000) and synaptopodin (cat. no: GTX39067, dilution: 1:500) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA) and GeneTex (San Antonio, TX, USA). Horseradish peroxidase-conjugated secondary antibody was obtained from Santa Cruz Biotechnology, Inc. (Dallas, TX, USA). Protein bands were visualized using an enhanced chemiluminescence kit (Thermo Fisher Scientific, Inc.). Signals were analyzed with Quantity One® software version 4.5 (Bio Rad Laboratories, Inc., Hercules, CA, USA). Anti-β-actin (cat. no. sc-130065; dilution: 1: 2,000; Santa Cruz Biotechnology) was used as the control antibody.

2.7 Enzyme-linked immunosorbent assay (ELISA)

The levels of tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) and interleukin 6 (IL-6) in the supernatant of cultured podocytes were measured by ELISA kit (Elabscience
Biotechnology Co., Ltd, Wuhan, China). MDA level in the supernatant was detected using a commercial kit from the Nanjing Jiancheng Bioengineering Institute (Nanjing, China). 8-hydroxy-2'-deoxyguanosine (8-OHdG) was measured using a DNA damage ELISA kit (Enzo Life Sciences, Farmingdale, NY), according to the manufacturer’s instructions.

2.8 Caspase-3 activity assay
Podocytes were lysated by NP-40 buffer, and the supernatant was collected for assay. In brief, 20 µl of cell lysate incubated with anti-caspase-3 antibody (cat.no: sc-7272; dilution, 1:200; Santa Cruz Biotechnology, Santa Cruz, CA, USA) at 37 °C for 1 h. The immunocomplexes were then incubated with peptide substrate (2 µl of 10 mM acetyl-Asp-Glu-Val-Asp-p-nitroanilide) in assay buffer (100 mM Hepes, pH7.5, 20% v/v glycerol, 5 mM dithiothreitol, and 0.5 mM EDTA) for 2 h at 37˚C. The release of p-nitroaniline was measured at 405 nm using an ELISA reader (MD SpectraMax M5; Molecular Devices, LLC, Sunnyvale, CA, USA).

2.9 Luciferase reporter gene assay
The wild-type (WT) and mutant-type (Mut) 3’-UTR of DAPK1 were inserted into the multiple cloning sites of the luciferase-expressing pMIR-REPORT vector (Ambion; Thermo Fisher Scientific, Inc., Waltham, MA, USA). After co-transfection with miR-Con or miR-361 combined with WT or Mut 3’-UTR of DAPK1 for 48 h, the luciferase activity was measured using a luciferase reporter assay kit (Promega Corporation, Madison, WI, USA) according to the manufacturer's protocols.
2.10 Animal experiments.

Twelve week old male db/db mice and their normal littermates (db/m) were obtained from the SLAC Laboratory (Shanghai, China). Mice were fed under standard laboratory conditions with a temperature-controlled environment (temperature, 25±2°C; humidity, 60±5%), an artificial 12-h light/dark cycle. Mice were given free access to food and water and acclimated to the environment for one week prior to experimentation. Mice were divided into four groups (n = 6 in each group): db/m group; db/db group; Agomir-miR-361 group (db/db mice received miR-361 agomir treatment); Agomir-Con group (db/db mice received Agomir-Con treatment). miR-361 agomir was synthesized by RiboBio Co., Ltd., Guangzhou, China. db/db mice were administrated with tail-vein injection (20 nM/0.1 mL) for 6 weeks (twice/week). After miR-361 agomir administration for 6 weeks, mice were sacrificed with euthanasia via an intravenous injection of sodium pentobarbital (200 mg/kg; Sigma-Aldrich; Merck KGaA, Germany). The animal experiment was approved by the Ethics Committee of the Linyi Central Hospital, Shandong Province, China. Animal research, including feeding, anesthesia with intraperitoneal injection of sodium pentobarbital (40 mg/kg; Sigma-Aldrich; Merck KGaA, Germany), sacrifice and specimen collection, conformed to the Animal Research: Reporting In Vivo Experiments guidelines 2.0 (Percie du Sert and Ahluwalia, 2020).

2.11 Biochemical parameters and GFR

Fasting blood glucose (FBG; Roche), serum insulin (Elabscience Biotechnology Co., Ltd., Wuhan, China), plasma creatinine (Cre; BIOSINO, Biotechnology Co., Ltd., Beijing, China), urinary albumin, and urinary albumin to creatinine ratio (ACR; BIOSINO, Biotechnology Co., Ltd., Beijing, China) were measured using commercial kits according to the manufacturer's protocols. The insulin resistance index was analyzed as described previously (Chen & Liu, 2019). GFR was measured at the end of the experiment as described previously.
Podocyte counting in glomerulus was detected by WT-1 nuclear staining as described previously (Zhang et al., 2017). After fixation with 4% formalin at room temperature for 24 h, kidneys were embedded with paraffin and stained with hematoxylin & eosin (H&E) kit according to standard histological procedures of the manufacturer (Beyotime Institute of Biotechnology, Haimen, China). Masson’s trichrome staining and interstitial fibrosis score were performed as described previously (Zhang et al., 2010). H&E and Masson’s trichrome staining was visualized with an optical microscope (Olympus BX53, Japan). DAPK1 (cat. no: sc-136286; dilution: 1: 50) was used to detect DAPK1 protein expression in the kidney. IHC staining was performed as described previously (Shi et al., 2012).

2.13 Statistical analysis

Data are presented as the mean ± standard deviation. Statistical analysis was performed using GraphPad Prism Version 7.0 (GraphPad Software, Inc., La Jolla, CA, USA). A Student’s t-test was used to analyze the differences between the two groups. Differences between multiple groups were analyzed by one-way analysis of variance, followed by a post-hoc Tukey test. $p < 0.05$ was considered to indicate a statistically significant difference.
3 Results

3.1 HG exposure down-regulates DAPK1 in podocytes

To determine the roles of DAPK1 on HG-evoked podocyte damage, we first detected the mRNA and protein expression levels of DAPK1 in podocytes in response to HG stimulation, and our findings corroborated a significant increase in DAPK1 mRNA (Figure 1A) and protein (Figure 1B) expression levels of HG-exposed podocyte compared with that of NG-treated podocytes. Furthermore, specific shRNA was designed to silence the expression of DAPK1. Transfection with sh-DAPK1 into podocytes resulted in a significant decrease in DAPK1 mRNA (Figure 1C) and protein (Figure 1D) expression.

3.2 DAPK1 silencing alleviates HG-caused podocyte growth inhibition, apoptosis and depletion.

Further functional assay substantiated that HG stimulation impeded the growth of podocytes, while DAPK1 knockdown by specific shRNA relieved HG-induced proliferative inhibition (Figure 2A). TUNEL staining revealed that HG incubation led to a significant increase in the number of TUNEL positive cells. However, HG-triggered apoptosis was significantly attenuated by sh-DAPK1 transfection (Figure 2B and 2C). Additionally, HG administration restrained the protein expression of synaptopodin, which is a biomarker of podocytes and down-regulates in numerous kidney diseases and podocyte injury (Yu et al., 2016), while knockdown of DAPK1 reversed HG-induced down-regulation of synaptopodin protein expression in podocytes (Figure 2D).
3.3 Knockdown of DAPK1 overturns HG-induced inflammatory response in podocytes

An inflammatory response is commonly accompanied with podocyte damage under HG conditions (Shi et al., 2016; Zhan et al., 2018). Herein, the effect of sh-DAPK1 transfection on HG-induced inflammation in podocytes was also investigated. In parallel with previous studies (Shi et al., 2016; Zhan et al., 2018), our results also validated that HG stimulation facilitated the secretion (Figure 3A-3C) and transcription (Figure 3D-3F) of inflammatory cytokines, including TNF-α, IL-1β and IL-6. However, HG-induced up-regulation of TNF-α, IL-1β and IL-6 levels in podocytes was markedly attenuated by sh-DAPK1 transfection.

3.4 HG-induced DNA damage and membrane damage in podocytes are neutralized by sh-DAPK1 transfection.

We also investigated the effect of DAPK1 on HG-induced cellular DNA damage via evaluating the yield of 8-OHdG in cell supernatant liquid. HG stimulation increases the release of 8-OHdG, which is a biomarker to reflect the degree of DNA oxidative damage (Rai et al., 2015). However, knockdown of DAPK1 counteracted HG-induced up-regulation of the 8-OHdG level (Figure 4A). We also discovered that HG treatment potentiated the release of MDA, which is a lipid peroxidation product and a marker of cell membrane damage (Whaley-Connell et al., 2006). Simultaneously, sh-DAPK1 transfection also counteracted HG-induced up-regulation of the MDA level in podocytes (Figure 4B). As shown in Figure 4C, exposure of podocytes to HG elevated the production of pro-apoptotic marker caspase3. Nevertheless, sh-DAPK1 transfection reversed HG-induced up-regulation of the caspase3 level in podocytes.
3.5 miR-361 directly targets DAPK1.

To further elucidate the potential pathway in HG-induced podocyte damage via targeting DAPK1, we focused on miRs, which are widely studied as post-transcriptional regulators to repress the protein expression of target genes (Baek et al., 2008). Using the on-line bioinformatics algorithm (miRanda-mirSVR; http://www.microrna.org), we found that miR-361 was able to target the 3’-UTR of DAPK1 via complementary base pairing (Figure 5A). Luciferase reporter gene assay was also performed to validate a direct association between miR-361 and DAPK1. WT or Mut 3’-UTR of DAPK1 was cloned into the luciferase reporter plasmid, which was co-transfected with miR-Con or miR-361 mimics into podocytes, and the results demonstrated that miR-361 mimics transfection led to a significant declined luciferase activity in podocytes containing WT 3’-UTR of DAPK1 (Figure 5B). However, miR-361 mimic transfection had no obvious effect on luciferase activity in podocytes containing Mut 3’-UTR of DAPK1 (Figure 5B).

3.6 Overexpression of DAPK1 counteracts the cytoprotection of miR-361 in HG-stimulated podocytes.

Firstly, we found that the expression of miR-361 was significantly suppressed in HG-stimulated podocytes compared with NG-treated podocytes (Figure 6A). Additionally, the protein expression of DAPK1 in podocytes was dramatically down-regulated by miR-361 mimic transfection compared with the control group (Figure 6B). HG incubation increased DAPK1 expression, which was weakened after transfection with miR-361 mimics in podocytes (Figure 6C). These findings suggest that miR-361 can directly down-regulate DAPK1 protein expression via post-transcriptional repression. Simultaneously, we found that the protective effect of miR-361 on HG-induced DAN damage (Figure 6D) and cell membrane damage (Figure 6E) was revoked by DAPK1 gain-of-function in podocytes.
Furthermore, the anti-apoptotic effect of miR-361 on podocytes, reflecting that down-regulation of caspase3 production (Figure 6F) and apoptotic cell proportion (Figure 6G), in response to HG stimulation was attenuated by DAPK1 plasmid transfection.

3.7. Overexpression of miR-361 alleviates renal damage in diabetic mice.

To investigate whether up-regulation of miR-361 protects against hyperglycemia-induced renal damage, miR-361 agomir was administrated by tail intravenous injection in db/db diabetic mice. Our study demonstrated that miR-361 expression decreased in the kidney of db/db diabetic mice. However, miR-361 expression was immensely elevated in response to miR-361 agomir administration (Figure 7A). miR-361 agomir administration had no obvious effect to reverse the increase in FBG and serum insulin in db/db diabetic mice (Figure 7B and 7C). Interestingly, miR-361 agomir treatment significantly alleviated insulin resistance index (9.63 ± 0.78) compared with that of in the untreated (14.29 ± 1.38) or agomir-Con-treated db/db (15.82 ± 1.71) mice (Figure 7D). We also found that miR-361 agomir treatment significantly improved renal filtration function in db/db diabetic mice, reflecting that reversed hyperglycemia-induced increase in plasma Cre (0.42 ± 0.03 mg/dl to 0.29 ± 0.01 mg/dl; Figure 7E), urinary albumin excretion (203.57 ± 17.30 µg/l to 158.33 ± 14.38 µg/mg; Figure 7G) and decrease in GFR (0.15 ± 0.01 ml/min to 0.20 ± 0.01 ml/min; Figure 7H). Podocyte counting in glomerulus by WT-1 nuclear staining showed that reduction of podocyte number (11.66 ± 2.05) in the glomerulus of db/db mice was significantly increased (29.33 ± 2.86) after miR-361 agomir administration (Figure 7I).
3.8. miR-361 agomir attenuates tubular atrophy and interstitial fibrosis in diabetic mice.

Histologic examination by H&E staining and Masson’s trichrome staining were performed to evaluate the protective effect of hyperglycemia-induced tubular and interstitial damage in diabetic mice. As shown in Figure 8A and 8B, severe tubular atrophy (Figure 8A) and collagen deposition (blue staining in Figure 8B) were observed in the kidney of db/db mice. However, miR-361 agomir markedly attenuated tubular pathological change in db/db mice (Figure 8A). Semiquantitative scoring also confirmed that interstitial fibrosis in db/db mice was reversed by the treatment of miR-361 agomir (Figure 8B).

3.9 miR-361 agomir down-regulates DAPK1 expression in the kidney of db/db mice.

To determine the inhibitory action of miR-361 on DAPK1 in vivo, western blot and IHC staining were performed to analyze DAPK1 protein expression in the kidney of db/db mice after miR-361 agomir treatment. As shown in Figure 9A and 9B, a significant increase in DAPK1 protein expression occurred in the kidney of db/db mice as detected by western blot, while miR-361 agomir treatment significantly down-regulated DAPK1 protein expression in the kidney of db/db mice. Moreover, IHC staining also revealed that miR-361 agomir treatment obviously weakened DAPK1 protein expression in the kidney of db/db mice (Figure 9C).
4 Discussion

DAPK1 is originally identified in interferon-γ-induced apoptosis in HeLa cells (Deiss et al., 1995). Recently, abundant DAPK1 expression has been observed in the brain tissues and implicated in the pathogenesis of neurological diseases, including stroke, epilepsy and Alzheimer’s disease (Singh et al., 2016; Wang et al., 2017). Accumulative evidence manifests that DAPK1 is up-regulated in response to noxious stimulus (Li et al., 2017; Xiong et al., 2018). For instance, ischemia-reperfusion (I/R) elevates DAPK1 expression in mouse N2a cells, as well as aggravating apoptosis in a time-dependent manner (Xiong et al., 2018). The up-regulation of DAPK1 is reported in the ovarian granulosa cells from the rat model with polycystic ovary syndrome (Li et al., 2017). Mechanically, the phosphorylation activity of DAPK1, as a Ca2+/calmodulin-dependent serine/threonine protein kinase, contributes to TNF-α, caspase and p53-mediated apoptosis (Singh et al., 2016; Wang et al., 2017).

In the present study, the over-activation of DAPK1 was triggered by HG stimulation in podocytes and kidneys. However, knockdown of DAPK1 attenuated HG-triggered growth inhibition, apoptosis, DNA damage and cell membrane damage in podocytes. These findings suggested that DAPK1 played a crucial role in unraveling the mechanisms of HG-evoked podocyte apoptosis. White et al corroborates that DAPK1 activation is associated with lung endothelial cell apoptosis during ischemic acute kidney injury (White et al., 2012). Of interest, our results highlighted that up-regulation of DAPK1 was implicated in HG-evoked inflammatory response and apoptosis in podocytes.

Although the pathogenic mechanism of HG-induced podocyte apoptosis is complicated, overwhelming evidence indicates that miRs as post-transcriptional regulators participate in
this pathological process via modulating multiple target genes (Lin et al., 2014; Xu et al., 2017; Fu et al., 2019). For example, miR-15b-5p, miR-21, miR-27a and miR-29a show a direct correlation with podocyte injuries through affecting their target genes, which are associated with inflammation, autophagy and apoptosis (Lin et al., 2014; Xu et al., 2017; Zhou et al., 2017; Fu et al., 2019). Previous study reveals that miR-361 is responsible for the dysfunction of mitochondrial homeostasis and apoptosis to accelerate myocardial infarction and heart failure (Wang et al., 2015). However, the biological effect of miR-361 on podocytes is still unclear. In our study, we established a miR-361 overexpressed podocyte, and the podocyte injury model was incubated by HG stimulation. Our findings illustrated a protective effect of overexpressed miR-361 on HG-induced podocyte dysfunction, including apoptosis, DNA damage and cell membrane damage. In vivo, miR-361 agomir protected against hyperglycemia-induced podocyte loss, tubular atrophy and interstitial fibrosis in the kidney of db/db mice. Moreover, miR-361 agomir inhibited the protein expression of DAPK1 in the kidney of db/db mice. These findings indicate that miR-361 agomir may be a prospective therapeutic drug to prevent hyperglycemia-induced renal dysfunction in diabetic mice. Inhibition of DAPK1 by miR-361 may represent a novel signaling pathway to ameliorate renal damage in diabetic mice.

In our study, it was revealed that DAPK1 was a direct target of miR-361. Transfection with miR-361 mimics into podocytes led to a significant decrease in the DAPK1 protein expression level. In addition, HG-evoked up-regulation of DAPK1 protein expression level in podocytes was counteracted by miR-361 mimic transfection. Intriguingly, overexpression of DAPK1 in HG-stimulated podocytes muted miR-361-mediated cytoprotection, including anti-apoptosis, resistance to DNA and membrane damage. These findings exhibited an almost completely opposite function between miR-361 and DAPK1 in the process of HG-induced
podocyte damage. Previous studies document that miR-26a-5p, miR-98, miR-141-3p and miR-194-3p-modulated post-transcriptional repression of DAPK1 attenuates cell apoptosis, inflammation and dysfunction in different cell injury models (Li et al., 2017; Zhou et al., 2018; Wei et al., 2019; Zhai et al., 2019).

However, there are a few limitations to the present study. First, the security and adverse effects of miR-361 agomir have not been completely evaluated in diabetic mice. Second, the direct correlation between DAPK1 and apoptosis or inflammation in HG-treated podocytes has not been explored in vitro. Furthermore, miR-361 agomir administration as a potential gene therapy is uncertain in the clinical practice.

In conclusion, miR-361 overexpression antagonized HG-induced podocyte dysfunction and renal damage by targeting DAPK1. These findings presented a novel mechanism of HG-induced podocyte and renal damage, supporting the miR-361/DAPK1 signaling pathway that could be used as a potential therapeutic target for the treatment of DN.
Funding: This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Disclosure of conflict of interest: The authors declare they have no competing interests.

References

Figure 1. HG exposure down-regulates DAPK1 in podocytes. After exposure podocyte to HG for 48 h, mRNA (A) and protein (B) expression levels of DAPK1 were monitored using RT-qPCR and western blotting, respectively. After transfection with sh-Con or sh-DAPK1 into podocytes for 48 h, mRNA (C) and protein (D) expression levels of DAPK1 were monitored using RT-qPCR and western blotting, respectively. N = 3 in each group. * P < 0.05.

Figure 2. DAPK1 silencing alleviates HG-caused podocyte growth inhibition, apoptosis and depletion. After transfection with sh-DAPK1 into HG-stimulated podocytes for 48 h, cell viability (A), apoptosis (B and C) and podocyte marker, synaptopodin (D), were measured using CCK8, TUNEL staining and western blotting, respectively. N = 3 in each group. * P < 0.05.

Figure 3. The knockdown of DAPK1 overturns HG-induced inflammatory response in podocytes. After transfection with sh-DAPK1 into HG-stimulated podocytes for 48 h, the secretion (A, B and C) in the supernatant liquid and gene expression (D, E and F) of inflammatory cytokines, including TNF-α, IL-1β and IL-6, were measured using ELISA assays and RT-qPCR, respectively. N = 3 in each group. * P < 0.05.

Figure 4. HG-induced DNA damage and membrane damage in podocytes are neutralized by sh-DAPK1 transfection. After transfection with sh-DAPK1 into HG-stimulated podocytes for 48 h, DNA damage was evaluated using the yield of 8-OHdG in cell supernatant liquid (A); MDA (B) and caspase3 (C) levels were measured using ELISA assays. N = 3 in each group. * P < 0.05.
Figure 5. miR-361 directly targets DAPK1. Using the on-line bioinformatics algorithm (miRanda-mirSVR; http://www.microrna.org), we found that miR-361 was able to target the 3'-UTR of DAPK1 via complementary base pairing (A). After WT or Mut 3'-UTR of DAPK1 was cloned into the luciferase reporter plasmid and co-transfected with miR-Con or miR-361 mimics into podocytes, luciferase reporter gene assay was also performed to validate a direct association between miR-361 and DAPK1 (B). N = 3 in each group. * P < 0.05.

Figure 6. Overexpression of DAPK1 counteracts the cytoprotection of miR-361 in HG-stimulated podocytes. The expression of miR-361 was measured in podocyte exposure to HG using RT-qPCR (A). After transfection with miR-361 mimics into podocytes for 48 h, the protein expression levels of DAPK1 were monitored using western blotting (B). After co-transfection with miR-361 mimics and vector-DAPK1 into HG-stimulated podocytes for 48 h, the protein expression levels of DAPK1 were monitored using western blotting (C). After transfection with miR-361 mimics into HG-stimulated podocytes for 48 h, 8-OHdG (D), MDA (E) and caspase3 (F) in cell supernatant liquid were measured to evaluate HG-induced podocyte damage; cell apoptosis was measured using TUNEL staining (G). * P < 0.05 compared with NG group; # P < 0.05 compared with HG group; & P < 0.05 compared with HG+miR-361 mimics group.

Figure 7. Overexpression of miR-361 alleviates renal damage in diabetic mice. miR-361 expression was measured using RT-qPCR in the kidney of db/db mice in response to miR-361 agomir administration (A). FBG (B), serum insulin (C), insulin resistance index (D), plasma Cre (E), urinary albumin excretion (F), ACR (G) and GFR (H) were measured to evaluate the
physiological and renal function of db/db mice in response to miR-361 agomir administration. Podocyte counting in glomerulus was detected by WT-1 nuclear staining (I). * $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$.

Figure 8. miR-361 agomir attenuates tubular atrophy and interstitial fibrosis in diabetic mice. Histologic examination was evaluated by H&E staining (A) and Masson’s trichrome staining with semiquantitative scoring (B). ** $P < 0.01$; *** $P < 0.001$.

Figure 9. miR-361 agomir down-regulates DAPK1 expression in the kidney of db/db mice. Western blot (A and B) and IHC staining (C) were performed to analyze DAPK1 protein expression in the kidney of db/db mice after miR-361 agomir treatment. * $P < 0.05$; *** $P < 0.001$.
A. Cell viability (%) of control

<table>
<thead>
<tr>
<th>Condition</th>
<th>NG</th>
<th>HG</th>
<th>sh-DAPK1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>100</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>HG</td>
<td>50</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>sh-DAPK1</td>
<td>25</td>
<td>12.5</td>
<td>12.5</td>
</tr>
</tbody>
</table>

B. Immunofluorescence images

C. TUNEL positive cells (%)

<table>
<thead>
<tr>
<th>Condition</th>
<th>NG</th>
<th>HG</th>
<th>sh-DAPK1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>HG</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>sh-DAPK1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

D. Western blot analysis

- Synaptopodin
- β-actin
HISTOLOGY AND HISTOPATHOLOGY

A. TNF-α levels (pg/mL) in different conditions:

- NG: + 150 ± 20
- HG: - 50
- sh-DAPK1: - 50

B. IL-1β levels (pg/mL) in different conditions:

- NG: + 100
- HG: - 50
- sh-DAPK1: - 50

C. IL-6 levels (pg/mL) in different conditions:

- NG: + 300
- HG: - 100
- sh-DAPK1: - 100

D. Relative mRNA expression of TNF-α:

- NG: + 2
- HG: - 1
- sh-DAPK1: - 1

E. Relative mRNA expression of IL-1β:

- NG: + 4
- HG: - 2
- sh-DAPK1: - 2

F. Relative mRNA expression of IL-6:

- NG: + 4
- HG: - 2
- sh-DAPK1: - 2
A

miR-361 3'-caugGGGACCUCUUA--GACUAUu-5'
WT 5'-aauaCCUUGCUUAUUACUGAUAa-3'

miR-361 3'-caugGGGACCUCUUA--GACUAUu-5'

WT or Mut 3'-UTR of DAPK1

Mut 5'-aauaCCUUGCUUCGGMCUGCGa-3'

B

Relative Luc activity

miR-Con
miR-361 mimics

WT 3'-UTR of DAPK1
Mut 3'-UTR of DAPK1

+ + +
- - -
+ + +
- - -
HISTOLOGY AND HISTOPATHOLOGY

Figure A
- Bar graph showing relative miR-361 expression levels in NG and HG conditions with or without DAPK1 overexpression.
- miR-361 mimics significantly reduce miR-361 expression compared to control.

Figure B
- Western blot images of DAPK1 and β-actin expression levels.
- miR-361 mimics reduce DAPK1 expression compared to control.

Figure C
- Bar graph showing relative protein expression levels of DAPK1.
- HG conditions lead to increased DAPK1 expression compared to NG.
- DAPK1 overexpression further increases DAPK1 expression.

Figure D
- Graph showing 8-OHdG levels.
- HG conditions increase 8-OHdG levels, and miR-361 mimics reduce these levels.

Figure E
- Graph showing MDA levels.
- HG conditions increase MDA levels, and miR-361 mimics reduce these levels.

Figure F
- Graph showing caspase 3 activity.
- HG conditions increase caspase 3 activity, and miR-361 mimics reduce these levels.

Figure G
- Images showing TUNEL and DAPI staining.
- HG and miR-361 mimics lead to increased TUNEL-positive cells.

Figure H
- Bar graph showing TUNEL-positive cell percentages.
- HG conditions lead to increased TUNEL-positive cell percentage, and miR-361 mimics reduce these percentages.
Figure A shows the relative expression of miR-361 in different groups. Figure B displays the plasma glucose (PG) levels. Figure C illustrates the serum insulin levels. Figure D represents the insulin resistance index. Figure E depicts the plasma creatinine (Cr) levels. Figure F shows the urinary albumin excretion. Figure G presents the albumin-to-creatinine ratio (ACR). Figure H displays the glomerular filtration rate (GFR). Figure I includes histological images of kidney sections from different groups.
A. db/m db/db Agomir-miR-361 Agomir-Con

B. Agomir-miR-361 Agomir-Con

![Image of histological sections showing different conditions and treatments.](image)

Graph showing interstitial fibrosis score:
- db/m
- db/db
- Agomir-miR-361
- Agomir-Con

*Significant differences indicated by ** and ***.*
Figure 1:

A
Western blot analysis of DAPK1 and β-actin expression in db/m, db/db, Agomir-miR-361, and Agomir-Con groups.

B
Bar graph illustrating the relative protein expression of DAPK1 across db/m, db/db, Agomir-miR-361, and Agomir-Con groups.

C
Immunohistochemical (IHC) staining for DAPK1 in db/m and db/db groups treated with Agomir-miR-361 and Agomir-Con.