Silencing of SETD6 inhibits the tumorigenesis of oral squamous cell carcinoma by inhibiting methylation of PAK4 and RelA

Authors: Wentao Huang, Hongjing Liu and Tianzhu Lv

DOI: 10.14670/HH-18-327
Article type: ORIGINAL ARTICLE
Accepted: 2021-03-12
Epub ahead of print: 2021-03-12
Silencing of SETD6 inhibits the tumorigenesis of oral squamous cell carcinoma by inhibiting methylation of PAK4 and RelA

Wentao Huang¹, Hongjing Liu², Tianzhu Lv²,#

¹Savaid Stomatology School, Hangzhou Medical College, Hangzhou, Zhejiang 310053, China
²College of Stomatology of Guizhou Medical University, Guizhou Medical University, Guiyang, Guizhou 550025, China

#Corresponding to: Tianzhu Lv, College of Stomatology of Guizhou Medical University, Guizhou Medical University, 481 binwen Road, Hangzhou, Zhejiang 310053, China
E-mail: ltz_0628@126.com

Running title: SETD6 inhibits methylation of PAK4 and RelA
Abstract

Background: Oral squamous cell carcinoma (OSCC) is one of the most common types of oral malignancies. SET-domain-containing protein 6 (SETD6) was recently identified as an important regulator of multiple signaling pathways through methylating protein substrates. Meanwhile, SETD6 is known to participate in multiple cancers. However, the role of SETD6 in OSCC remains unclear.

Methods: Gene and protein expressions in OSCC cells or tissues were detected by RT-qPCR and western blot, respectively. In addition, CCK-8 assay was used to test the cell viability. A transwell assay was performed to measure cell migration and invasion. Flow cytometry was used to test cell apoptosis and cycle. Meanwhile, methylation-specific PCR (MSP) was used to detect the status of promoter methylation.

Results: SETD6 was significantly upregulated in OSCC tissues. In addition, knockdown of SETD6 notably inhibited the proliferation and induced the apoptosis of OSCC cells. Furthermore, silencing of SETD6 notably suppressed the migration and invasion of OSCC cells. Meanwhile, SETD6 siRNA significantly inhibited the promoter methylation of RelA (NF-κB p65) and PAK4. Furthermore, SETD6 siRNA induced G1 arrest in OSCC cells.

Conclusion: Knockdown of SETD6 inhibits the tumorigenesis of OSCC by suppressing promoter methylation of PAK4 and RelA. Therefore, our study might shed new light on exploring strategies for the treatment of OSCC.

Keywords: OSCC; SETD6; NF-κB; methylation
Introduction

Oral squamous cell carcinoma (OSCC) is one of the most aggressive cancers with high malignant behaviors (Nakamichi et al., 2020). Moreover, the incidence of OSCC is nearly 300,000 new cases all over the world every year (Sowmya et al., 2020). Betel quid, smoking and HPV infection are known to be the major risk factors which lead to OSCC (Gilligan et al., 2020; Jayaraj et al., 2020; Oliveira Alves et al., 2020). Furthermore, OSCC is known as a propensity for metastasis (Bai et al., 2020). At present, surgery, chemotherapy and radiotherapy are the major methods of the treatment of OSCC (Wong et al., 2020). However, the effect remains not ideal (Chen et al., 2020). Great efforts have been made to study OSCC. For example, Zhang Q. et al found that Forkhead promotes EMT and chemoresistance by upregulating IncRNA CYTOR in OSCC (Zhang et al., 2020); Zhou S et al revealed that Akt signaling played an important role in tumorigenesis of OSCC (Zhou et al., 2020). However, more studies are needed to explore the pathogenesis of OSCC.

The SET-domain-containing protein 6 (SETD6) is a member of the protein lysine methyltransferases (PKMTs) family, and it is known as a lysine methyltransferase (Dai et al., 2020). In addition, SETD6 is linked to the tumorigenesis of multiple cancers. For instance, upregulation of SETD6 could inhibit the progression of gastric cancer (Bai et al., 2019); Yao R. et al indicated that SETD6 might promote breast cancer cell proliferation and migration (Yao et al., 2018). However, the function of SETD6 in OSCC remains unclear.

P65 (RelA) is known to be a crucial mediator during immune and inflammatory responses (Levkau et al., 1999). P21-activated kinase 4 (PAK4) is a member of the serine/threonine kinases family is over-expressed in numerous cancer tumors and is associated with oncogenic cell proliferation, migration and invasion (Vershinin et al., 2020). SETD6 might methylate RelA at Lysine 310, thus inhibiting the activation of NF-κB target genes (Walter et al., 2020). In addition, it has been reported that SETD6 might regulate the WNT
signaling pathway by methylation of PAK4 at Lysine 473 (Vershinin et al., 2016). However, the correlation between SETD6 and RelA (or PAK4) in OSCC is not clear. In the current study, we sought to investigate the function of SETD6 in OSCC. We hope this research will shed new light on exploring new strategies for the treatment of OSCC.

Material and methods

Cell culture and cell transfection

OSCC cell lines (Cal-27 and SCC-9) and normal oral cells (HOK) were obtained from American Type Culture Collection (ATCC, Rockville, MD, USA). Cells were maintained in Dulbecco's Modified Eagle's medium (DMEM, Thermo Fisher Scientific, Waltham, MA, USA), supplemented with 10% fetal bovine serum (FBS, Thermo Fisher Scientific), 100 U/ml penicillin and 100 µg/ml of streptomycin in a humidified incubator with 5% CO₂ at 37°C. siRNAs targeted against SETD6 (SETD6 siRNA1, SETD6 siRNA2 and SETD6 siRNA3; 10 nM) and a negative control siRNA (siRNA-NC) were purchased from Guangzhou RiboBio Co., Ltd. and transfected into OSCC cells (5x10³) using Lipofectamine® 2000 (Thermo Fisher Scientific, Inc.), according to the manufacturer’s instructions. Cells were incubated at 37°C for 6 h before subsequent experiments were performed. Transfection efficiency was determined using reverse transcription-quantitative PCR (RT-qPCR). The sequences of the siRNAs were as follows: Negative control siRNA, 5'-UUCUCCGAACGUGUCACGUTT-3’; SETD6 siRNA1, 5'-GGAAUGAAGCAACUGAGAUUU-3’; SETD6 siRNA2, 5'-GGGTTCGATTGCCAGAT-3’ and SETD6 siRNA3, 5'-CGTTAAGGTTCCGACGAC-3’.

Tissue collection

In total, 30 pairs of OSCC samples and adjacent normal tissues were collected from the Affiliated Stomatological Hospital of Guizhou Medical
University between August 2018 and August 2019. The clinical and pathological data of these patients were collected with their written informed consent. The expression of SETD6 in OSCC and adjacent normal tissues was detected by immunohistochemistry (IHC) staining as previously described (Ferrari et al., 2020).

The Cancer Genome Atlas (TCGA)
The expression of SETD6 in OSCC tissues or adjacent normal tissues was analyzed by TCGA. The data of TCGA were analyzed from Gene Expression Profiling Interactive Analysis (GEPIA) as previously described (Tang et al., 2017).

IHC staining
Tissues of patients were fixed in 4% paraformaldehyde in PBS overnight, paraffin-embedded, and cut into 5-μm-thick sections. Paraffin sections were deparaffinized and rehydrated. The sections were heated in sodium citrate buffer in a microwave for antigen retrieval, washed with phosphate-buffered saline (PBS) for 5 min (three times) at room temperature, incubated in 3% H₂O₂ at room temperature for 25 min. The sections were washed with PBS for 5 min (three times) and blocked and incubated in goat serum for 30 min. Then, the samples were stained with primary antibodies (anti-SETD6) overnight at 4°C. After that, samples were incubated with secondary antibody (HRP-labeled) for 30 min at 37°C. Finally, freshly prepared diaminobenzidine (DAB) was added for color development. All the antibodies were obtained from Abcam (Cambridge, MA, USA). The tissues were observed under a fluorescence microscope.

Real-time reverse transcriptase quantitative PCR (RT-qPCR)
Total RNA was extracted from OSCC cells using TRizol reagent (Takara, Inc.). Subsequently, cDNA was synthesized using PrimeScript RT reagent kit
(ELK Biotechnology, Wuhan, China) according to the manufacturer’s instructions. The temperature and duration of RT were as follows: 37°C for 60 min and 85°C for 5 min. The RT-qPCR was performed by the SYBR® Premix Ex Taq™ II kit (ELK Biotechnology) on a 7900HT system (Applied Biosystems, CA, USA) according to the following conditions: Initial denaturation for 10 min at 95°C; 40 cycles of 95°C for 15 sec and 60°C for 30 sec; and final extension for 1 min at 60°C. The primers used were as follows: RelA: (forward), 5’-CGCTTCGCGCAGCACATATAC-3’; (reverse), 5’-AAATATGGAACGCTTCACGA-3’. PAK4: (forward), 5’-TCCCCCTGAGCCATTGTG-3’; (reverse), 5’-ACCTGTCTCCCATCCA-3’. SETD6: (forward), 5’-GGTCCACGGCAGTTAACA-3’; (reverse), 5’-ACCATTGAAGGCTTAAGG-3’ and β-actin: (forward): 5’-TGCGCTAGCAGCGGGAACAGTTC-3’; (reverse): 5’-CCAGTGAGGGTCCGAGGTATT-3’. The relative level was normalized to β-actin using the 2^{-ΔΔCt} method.

Cell Counting Kit-8 (CCK-8) assay

Cell counting kit-8 (Beyotime, Shanghai, China) was applied to determine the cell viability according to the manufacturer’s protocol. Cal-27 or SCC-9 cells were plated onto a 96-well plate at the density of 5.0×10^3 cells/well and incubated at 37°C overnight. After that, cells were transfected with siRNA-ctrl (NC), SETD6 siRNA1, SETD6 siRNA2 or SETD6 siRNA3 for 0, 24, 48 or 72 h. Later on, 10 μL CCK-8 reagents were added into each well, and then cells were incubated for 2 h at 37°C. The absorbance was detected at 450 nm using a microplate reader (Bio-Rad, Hercules, CA, USA).

Transwell assays

For the cell migration assay, 2×10^5 OSCC cells were seeded into the upper chambers of the 24-well plates in 200 μL of serum-free RPMI 1640 medium supplemented with 0.2% bovine serum albumin. The lower chambers
contained RPMI 1640 medium supplemented with 1% FBS. After 24 h of incubation at 37°C, the non-migrating cells were gently removed from the upper side of each chamber with a cotton swab, while the cells that had migrated were fixed with 95% alcohol for 10 min and stained with 0.5% crystal violet (Sigma, Grand Island, NY, USA) for 5 min. Finally, cells were counted under an inverted light microscope (Olympus) at 400x magnification.

For the invasion assay, the upper chambers of the 24-well plates were pretreated with 50 μL of Matrigel (12.5 mg/L, BD Biosciences, Franklin Lake, NJ, USA). Then, OSCC cells (1×10^6 cells/ml) in FBS-free medium were seeded into the upper chambers. The lower chambers contained RPMI 1640 medium supplemented with 1% FBS. The cells were incubated at 37°C for 24 h, and cells that had attached to the underside of the membrane were fixed and stained with 0.5% crystal violet solution. Finally, the number of invading cells was counted under a microscope at 400 x magnification.

Flow cytometry assay

The early and late apoptosis (Annexin-V^+ PI^- plus Annexin-V^+ PI^+) of OSCC cells were measured by flow cytometry. OSCC cells were seeded into 6-well plates at a density of 1×10^6 cells/well. Then, OSCC cells were collected and then resuspended in 100 μL binding buffer following centrifugation (4°C) at 500 x g for 5 min. After that, the cell suspension was stained with 5 μl annexin V-FITC (BD Biosciences, Franklin Lake, NJ, USA) and 5 μl propidium iodide (PI, BD Biosciences) for 15 min. Later on, the cell apoptosis rate was measured using a flow cytometer (BD Biosciences) and the results were analyzed using FACS (BD Biosciences) with FlowJo (v10.6.2; FlowJo LLC).

Western blot

Total proteins were isolated from OSCC cells using a RIPA buffer (Beyotime, Shanghai, China) and quantified with a BCA protein assay kit (Beyotime). Equal amounts of protein (30 μg) were separated by 10% SDS-PAGE, and
then transferred onto polyvinylidene difluoride membrane (PVDF, Thermo Fisher Scientific). Non-fat milk (5%) in TBST was used to block the PVDF membrane at room temperature for 1 h. Later on, PVDF membrane was incubated at 4°C overnight with the following primary antibodies: anti-SETD6 (1:1000, Abcam Cambridge, MA, USA), anti-Cyclin D1 (1:1000, Abcam), anti-PAK4 (1:1000, Abcam), anti-β-catenin (1:1000, Abcam), anti-c-Myc (1:1000, Abcam), anti-RelA (1:1000, Abcam), anti-p21 (1:1000, Abcam), anti-CDK4 (1:1000, Abcam), anti-Bcl-2 (1:1000, Abcam), anti-Active caspase 3 (1:1000, Abcam) and anti-β-actin (1:1000, Abcam). Then, the membrane was incubated with HRP-labeled goat anti-rabbit secondary antibody (1:5000, Abcam) for 1 h at room temperature. Enhanced chemi-luminescence (ECL) reagent (Thermo Fisher Scientific) was used to visualize the protein bands according to the manufacturer’s protocol. Image J Software was used to quantify the intensity of the bands. β-actin was used as an internal control.

Methylation-specific PCR (MSP)

For MSP detection, a pair of primers to amplify only methylated CpG targets were obtained based on the CpG island sequence of the RelA/PAK4 promoter-proximal elements, and the sequences were as follows: RelA: 5’-TTATTTGTGGTAGAATTTTGGCG-3’ (forward) and 5’-CATATTAATCCCAATACATACGTCG-3’ (reverse); PAK4: 5’-CCAAATCGCTAGTGAUUUUCCCCC-3’ (forward) and 5’-AATTUUGGCCACCCCCGG-3’ (reverse). Another sequence of primers (performed to amplify unmethylated CpG targets) was as follows: RelA: 5’-ATTTTGGCCCGGACATTCCCCCAAA-3’ (forward) and 5’-GGCAACCTTTGUUUCACCATCAGCG-3’ (reverse). MSP was performed with a standard PCR machine. The amplified DNA fragments were then subjected to 2% agarose gel electrophoresis.
Cell cycle detection

Briefly, OSCC cells were harvested by accutase treatment and counted with a hemocytometer. 5×10^5 cells were fixed, permeabilized, and stained with PI (BD bioscience) in accordance with the manufacturers’ instructions. Cells were analyzed by flow cytometry using a FACSCalibur measuring FL2 area versus total counts. The data were analyzed using ModFit (http://mycyte.org/) and FlowJo (http://mycyte.org/) software to generate the percentages of cells in G1, S, and G2 to M phases of the cell cycle as previously described (Zhang et al., 2018).

Statistical analysis

All experiments were expressed as mean ± standard error (S. D.). CCK-8 assay was performed in quintuplicate. Cell transfection, RT-qPCR, IHC staining, flow cytometry, western blot, transwell migration and invasion assays were repeated triply. Graphs were generated using GraphPad Prism software (version 7.0, La Jolla, CA, USA). One-way analysis of variance (ANOVA) and Tukey’s tests were performed for comparisons between multiple groups. P value < 0.05 was considered as statistically significant.

Results

Knockdown of SETD6 significantly inhibited the proliferation of OSCC cells

To detect the expression of SETD6, the Cancer Genome Atlas (TCGA) was used. As indicated in Figure 1A, the expression of SETD6 in OSCC tissues was higher than that in adjacent normal tissues. Consistently, the protein level of SETD6 in OSCC tissues was significantly higher than that in normal tissues (Figure 1B). Consistently, the level of SETD6 in OSCC cells was notably upregulated, compared with that in HOK cells (Figure 1C). Meanwhile, the expression of SETD6 in OSCC cells was notably decreased by SETD6 siRNA (Figure 1D and 1E). Moreover, OSCC cells were more sensitive to SETD6
siRNA2 or siRNA3, compared to siRNA1. Thus, SETD6 siRNA2 and siRNA3 were selected for use in subsequent experiments. Furthermore, silencing of SETD6 significantly decreased viability of OSCC cells (Figure 1E and 1F). Taken together, knockdown of SETD6 significantly inhibited the proliferation of OSCC cells.

Silencing of SETD6 notably induced apoptosis and inhibited metastasis in OSCC cells

In order to test cell apoptosis, flow cytometry was performed. As we expected, knockdown of SETD6 notably induced apoptosis of OSCC cells (Figure 2A and 2B). Moreover, Cell migration and invasion of OSCC were obviously inhibited by SETD6 siRNA (Figure 2C-2F). Altogether, silencing of SETD6 notably induced apoptosis and inhibited metastasis in OSCC cells. Moreover, based on these data, OSCC cells were more sensitive to SETD6 siRNA3 than SETD6 siRNA2. Therefore, SETD6 siRNA3 was selected for further analysis.

Knockdown of SETD6 inhibited the methylation of PAK4 promoter

For the purpose of investigating the correlation between SETD6 and PAK4, MSP was used. As shown in Figure 3A, silencing of SETD6 notably inhibited the methylation of PAK4 promoter. In addition, the expression of PAK4 in OSCC cells was notably upregulated in the presence of SETD6 knockdown (Figure 3B). Meanwhile, the level of PAK4 was notably downregulated in Cal-27 cells, compared with that in HOK cells (Figure 3C). Moreover, silencing of SETD6 obviously inhibited the expressions of SETD6, β-catenin, cyclin D1 and c-Myc and upregulated the protein level of PAK4 in OSCC cells (Figure 3D and 3E). To sum up, knockdown of SETD6 was able to inhibit the methylation of PAK4 promoter.
Silencing of SETD6 notably decreased the level of RelA (p65) promoter methylation

To explore the correlation between SETD6 and RelA, MSP was used. As revealed in Figure 4A, the state of RelA promoter methylation was significantly inhibited by SETD6 siRNA, and the expression of RelA in OSCC cells was notably upregulated by silencing of SETD6 (Figure 4B). Meanwhile, the level of RelA was significantly upregulated in OSCC cells, compared with that in HOK cells (Figure 4C). In addition, the expressions of RelA, p21 and active caspase 3 in OSCC cells were notably increased by SETD6 siRNA (Figure 4D and 4E). In contrast, silencing of SETD6 significantly inhibited the levels of CDK4 and Bcl-2 in OSCC cells (Figure 4D and 4E). Altogether, silencing of SETD6 inhibited the methylation of RelA (p65) promoter.

Knockdown of SETD6 notably induced G1 arrest in OSCC cells

To test the cell cycle distribution, flow cytometry was used. As we expected, SETD6 siRNA significantly induced G1 arrest in OSCC cells (Figure 5A and 5B). Therefore, knockdown of SETD6 inhibited the growth of OSCC cells by inducing G1 arrest.

Discussion

It has been reported that SETD6 is involved in multiple cancers (Martin-Morales et al., 2017; Yao et al., 2018; Zhang et al., 2019). In this study, we found that SETD6 was upregulated in OSCC. This finding supplemented the role of SETD6 in OSCC. In addition, our finding firstly found SETD6 knockdown was able to inhibit the tumorigenesis of OSCC, suggesting that SETD6 might function as a key mediator in OSCC.

As we know, SETD6 might methylate PAK4 at Lysine 473 via binding to PAK4 (Vershinin et al., 2016). In addition, SETD6 might activate Wnt signaling by regulating the methylation of PAK4 (Vershinin et al., 2016). Consistently, our research indicated that silencing of SETD6 might inhibit the tumorigenesis of
OSCC via inactivation of Wnt signaling. On the other hand, our findings suggested that SETD6 siRNA significantly inhibited the expression of c-Myc, CDK4 and Cyclin D1. These data further confirmed that SETD6 knockdown was able to inactivate Wnt signaling in OSCC.

It has been previously confirmed that SETD6 negatively regulated the activity of RelA (p65) (Vershinin et al., 2016). In addition, RelA is known to act as a scaffold for subsequent recruitment which leads to a constitutive cell growth inhibition and inflammatory responses (Levy et al., 2011; Maggirwar et al., 2000). Walter CEJ et al found that SETD6 might regulate NF-κB signaling in bladder cancer (Walter et al., 2020). Consistently, our data revealed that knockdown of SETD6 might inhibit the tumorigenesis of OSCC via upregulation of RelA. Meanwhile, SETD6 siRNA inhibited the expression of Bcl-2. A recent report indicated that SETD6 might upregulate MDM2 by methylating RelA (Mukherjee et al., 2017), and MDM2 can positively regulate Bcl-2 (Liu et al., 2020). Therefore, it might be concluded that SETD6 siRNA inhibited the expression of Bcl-2 by inhibiting the promoter methylation of RelA. According to Mukherjee N et al, SETD6 can positively regulate p65 in bladder cancer (Mukherjee et al., 2017). In contrast, our data showed that SETD6 knockdown upregulated the expression of p65. A large part of p65 transferred into the nucleus of cells after phosphorylation, and this phenomenon can lead to the inhibition of methylation (O’Neill et al., 2014). Thereby, this discrepancy might due to the protein structure.

Frankly speaking, there are some shortcomings in this research: some rescue experiments need be supplemented to further verify whether SETD6 siRNA can inhibit the methylation of RelA and PAK4. Thus, more investigations are needed in the future.

In conclusion, silencing of SETD6 suppressed the tumorigenesis of OSCC by inhibiting methylation of PAK4 and RelA. Therefore, SETD6 might serve as a new target for treatment of OSCC.
Conflict of interests
These authors declared no competing interests in this study.

References

controls the expression of estrogen-responsive genes and proliferation of breast carcinoma cells. Epigenetics. 9, 942-950.

3069-3077.

Figure legends
Figure 1 Knockdown of SETD6 significantly inhibited the proliferation of OSCC cells. (A) The expressions of SETD6 in OSCC and adjacent normal tissues were presented. The data were acquired from TCGA. (B) The expressions of SETD6 in OSCC and adjacent normal tissues were detected by IHC staining. (C, D) Cal-27 or SCC-9 cells were transfected with NC, SETD6 siRNA1, SETD6 siRNA2 or SETD6 siRNA3 for 24 h. Then, the expression of SETD6 in OSCC cells was detected by RT-qPCR. (E, F) Cal-27 or SCC-9 cells were treated with NC, SETD6 siRNA2 or SETD6 siRNA3 for 0, 24, 48 or 72 h, respectively. Then, the OD value of OSCC cells was tested by CCK-8 assay. **P<0.01 compared to control.
Figure 2 Silencing of SETD6 notably induced apoptosis and inhibited metastasis of OSCC cells. (A, B) The rate of apoptotic Cal-27 or SCC-9 cells was detected by FACS after double staining with Annexin V and PI. X axis: the level of Annexin-V FITC fluorescence; Y axis: the PI fluorescence. (C, D) The invasion of Cal-27 or SCC-9 cells was tested using transwell invasion assay; ×400 magnification. *P<0.05, **P<0.01 compared to control.

Figure 3 Knockdown of SETD6 inhibited the methylation of PAK4 promoter. (A) MSP of the PAK4 CpG island in OSCC cells treated with NC or SETD6 siRNA3. ‘U’ indicates unmethylated nucleotides. ‘M’ indicates methylated nucleotides. (B) The expression of PAK4 in OSCC cells was detected by RT-qPCR. (C) The expression of PAK4 in OSCC cells or HOK cells was detected by RT-qPCR. (D) The protein expressions of SETD6, PAK4, β-catenin, Cyclin D1 and c-Myc in OSCC cells were detected by western blot. (E) The relative expressions were quantified by normalizing to β-actin. **P<0.01 compared to control.

Figure 4 Silencing of SETD6 notably decreased the level of RelA (p65) promoter methylation. (A) MSP of the RelA CpG island in OSCC cells treated with NC or SETD6 siRNA3. ‘U’ indicates unmethylated nucleotides. ‘M’ indicates methylated nucleotides. (B) The expression of RelA in OSCC cells was detected by RT-qPCR. (C) The level of RelA in OSCC cells or HOK cells was investigated by RT-qPCR. (D) The protein expressions of RelA, p21, Active caspase 3, CDK4 and Bcl-2 in OSCC cells were detected by western blot. (E) The relative expressions were quantified by normalizing to β-actin. **P<0.01 compared to control.

Figure 5 Knockdown of SETD6 notably induced G1 arrest in OSCC cells. (A, B) The cell cycle distribution in G0/G1, S, and G2 phase after propidium iodide staining of OSCC cells was determined by FACS. **P<0.01 compared to...
control.
HISTOLOGY AND HISTOPATHOLOGY

(A) Gel electrophoresis showing bands at different molecular weights. The bands are labeled with marker sizes (600 bp, 400 bp, 300 bp, 200 bp, 100 bp).

(B) Bar graph showing the relative level of RelA (fold change) across different conditions. The graph compares Blank, siRNA-ctrl, and SETD6 siRNA3 treatments.

(C) Bar graph illustrating the relative level of RelA (fold change) across different cell lines (HOK, Cal-27, SCC-9), with comparisons between Blank and SETD6 siRNA3.

(D) Western blot analysis showing protein expression levels of RelA, p21, CDK4, Bcl-2, active caspase 3, and β-actin. The proteins are detected across three conditions: Blank, siRNA-ctrl, and SETD6 siRNA3.

(E) Bar graph depicting the relative protein expression of RelA, p21, CDK4, Bcl-2, and active caspase 3 across different conditions, with significant differences indicated by **.
A

Bl a nk siRNA- c trl

SETD6 siRNA3

B

Cell cycle distribution (%)

<table>
<thead>
<tr>
<th></th>
<th>Blank</th>
<th>NC</th>
<th>SETD6 siRNA3</th>
</tr>
</thead>
<tbody>
<tr>
<td>G0-G1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2-M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **Blank:**
- **NC:**
- **SETD6 siRNA3:**