Plasma Golgi protein 73 levels predict prognosis of HCV-related hepatic fibrosis

Authors: Lingdi Liu, Zaid Al-Dhamin, Xiwei Yuan, Luyao Cui, Yang Yang, Wen Zhao, Ying Zhang, Na Fu and Yuemin Nan

DOI: 10.14670/HH-18-269
Article type: ORIGINAL ARTICLE
Accepted: 2020-10-14
Epub ahead of print: 2020-10-14

This article has been peer reviewed and published immediately upon acceptance.
Articles in “Histology and Histopathology” are listed in Pubmed.
Pre-print author’s version
Plasma Golgi protein 73 levels predict prognosis of HCV-related hepatic fibrosis

Lingdi Liu #, Zaid Al-Dhamin #, Xiwei Yuan, Luyao Cui, Yang Yang, Wen Zhao,
Ying Zhang, Na Fu, Yuemin Nan*

Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei
Medical University & Hebei Key Laboratory of Mechanism of Liver Fibrosis in
Chronic Liver Disease, Shijiazhuang 050051, China

Co-first author
* Corresponding author: Yuemin Nan. Department of Traditional and Western Medical
Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China.
Address: No. 139 Ziqiang Road, Shijiazhuang, Hebei Province, China.
Postal code: 050051.
Tel: +86 311 66781226;
Fax: +86 311 66781289;
E-mail: nanyuemin@163.com
Abstract

Objectives: To explore the correlation between plasma Golgi protein 73 (GP73) and progression of hepatitis C virus (HCV)-induced hepatic fibrosis.

Methods: A total of 232 subjects of chronic hepatitis C and 31 healthy controls were enrolled from the Third Hospital of Hebei Medical University from January 2010 to September 2018. The plasma GP73 levels were detected by ELISA. Hematoxylin and eosin, Masson trichrome stained liver tissue sections were examined under a light microscope based on the METAVIR scoring system and "Beijing classification (P-I-R)". The correlation analysis and receiver operating characteristic curve (ROC) were performed to analyze the diagnostic efficiency of plasma GP73, APRI, and FIB-4 for staging hepatic fibrosis and predicting progression.

Results: The plasma GP73 levels were increased with the progression of liver fibrosis, and GP73 concentrations of healthy controls, HCV patients with fibrosis stage 1, 2, 3 and 4 were 94.82 ng/ml, 151.3 ng/ml, 157.9 ng/ml, 181.7 ng/ml and 208.5 ng/ml, respectively. According to “Beijing classification”, plasma GP73 concentration was 177.08 ng/ml in the progression group and 154.00 ng/ml in regressive / indeterminate group, respectively ($P = 0.007$). The area under the ROC curves (AUCs) of GP73,
APRI, and FIB-4 for diagnosis of liver cirrhosis were 0.89, 0.77, and 0.82, respectively, and GP73 for progressive fibrosis was 0.73. The plasma GP73 levels were significantly positively correlated with hepatic inflammation, serum ALT, and negatively correlated with albumin levels.

Conclusion: The plasma GP73 might be a potential biomarker for staging liver fibrosis, and could predict regression or progression of HCV-related liver fibrosis.

Key Words: Hepatitis C; Golgi protein 73; APRI; FIB-4; Liver fibrosis; Hepatic inflammation; Prognosis.
Introduction

In the era of direct-acting antiviral drugs (DAAs) agents, the elimination of hepatitis C viral (HCV) infection is achievable. However, 23% of patients with chronic HCV infection have advanced liver fibrosis or cirrhosis, which is challenging to be entirely reversed by short-term antiviral therapy (Taherkhani and Farshadpour, 2017; Wei, 2018). For these patients, an accurate diagnosis is essential and helpful for the therapy. Early diagnosis and effective treatment are beneficial to inhibit or even reverse the progression of HCV-related hepatic fibrosis to the end stage of liver disease. The "Beijing classification" for liver fibrosis proposed by Sun et al provides a crucial basis for the prognosis of fibrotic chronic hepatitis C (CHC) (Sun et al., 2017). Based on it, the establishment of a novel, rapid and non-invasive diagnostic method would increase the accuracy of early diagnosis, treatment, and prognosis of HCV-induced liver fibrosis.

Recent studies reported that Golgi protein 73 (GP73) is significantly associated with the development of liver fibrosis (Mao et al., 2010; Yao et al., 2018; Lu et al., 2018). We performed a case-control study to clarify the relationship between plasma GP73 levels, the progression, and prognosis of HCV-related hepatic fibrosis, which accords to the META VIR scoring system and the "Beijing classification". Furthermore, the diagnostic efficiency of plasma GP73 in liver fibrosis was analyzed by the receiver
operating characteristic curve (ROC) and compared with the clinical routine parameters: aspartate aminotransferase-to-platelet ratio index (APRI) (Wai et al., 2003) and the fibrosis index based on four factors (FIB-4) (Sterling et al., 2006).

Materials and methods

Subjects

A total of 232 patients with chronic HCV infection were recruited from the Third Hospital of Hebei Medical University from January 2010 to September 2018 (Fig. 1). Diagnoses were based on the Hepatitis C Guidance 2018 Update: AASLD-IDSA Recommendations for Testing, Managing and Treating Hepatitis C Virus Infection (AASLD-IDSA HCV Guidance Panel., 2018), and the Guideline of Prevention and Treatment for Hepatitis C by the Chinese Society of Hepatology and Chinese Society of Infectious Diseases and Parasitology of the Chinese Medical Association (Chinese Society of Hepatology and Chinese Society of Infectious Disease of Chinese Medical Association, 2015). Participants with the following conditions were excluded: acute hepatitis C; co-infection with human immunodeficiency virus (HIV); co-infection with hepatitis A, B, or D virus. Thirty-one healthy controls were recruited from the physical examination center in the hospital. Written informed consents were obtained from all patients. The study was approved by the Ethics Committee of the Third
Hospital of Hebei Medical University, according to the Declaration of Helsinki and Good Clinical Practice guidelines. All of the clinical data and samples of the HCV patients were collected at baseline, before they received antiviral therapies.

Detection of HCV antibodies and viral loads of HCV

Serum HCV antibody was detected by enzyme-linked immunosorbent assay (ELISA) using a commercial detection kit (Livzon Diagnostics Inc., Zhuhai, China). Plasma HCV RNA loads were determined by reverse transcription-quantitative polymerase chain reaction (qRT-PCR) assay (Cobas Taqman HCV Test, Roche Diagnostics, Indianapolis, IN, USA). With this method, the lowest detection limit is 15 IU/ml.

Biochemical assays

Serum albumin (ALB), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma glutamyl transpeptidase (GGT) levels were tested using an Olympus AU5400 automatic chemical analyzer (Olympus CO., Ltd., Tokyo, Japan). Peripheral blood platelet (PLT) counts were detected with an automated hematology analyzer using the Hydro Dynamic Focusing method (XS-1000i; Sysmex Corporation, Kobe, Japan).
Test of plasma GP73 levels

Plasma GP73 levels were tested with enzyme-linked immunosorbent assay (ELISA) according to the manufacturer's protocol (Hotgen Biotechnology Co., Ltd. Beijing, P.R. China).

Evaluation of liver histopathology

The ultrasound-guided percutaneous liver biopsy was routinely performed using a 16G liver puncture needle (Bard Peripheral Vascular, Inc., Tempe, AZ, USA). The liver biopsy specimens were considered reliable when the liver specimen length was ≥ 1.5 cm, or the portal tract number was ≥ 6. Liver tissue specimens were fixed in buffered formalin, embedded in paraffin, and then cut at a width of approximately 5µm and conventionally stained with hematoxylin and eosin (H & E) and Masson trichrome. The liver sections were observed at 40x to 400x magnification using a Leica DM 2000 microscope (Leica Microsystems, Inc., Buffalo Grove, IL, USA). All of the liver samples were evaluated independently by two pathologists according to the META VIR scoring system and the "Beijing classification", respectively.

Liver fibrosis staging The stages of the liver fibrosis were classified according to the META VIR scoring system (The French META VIR
Cooperative Study Group, 1994) as follows: F0, no fibrosis; F1, portal fibrosis without septa; F2, portal fibrosis with rare septa; F3, many septa without cirrhosis; and F4, cirrhosis. Significant liver fibrosis was defined as ≥ F2, and advanced fibrosis was ≥ F3.

Quality of liver fibrosis According to the "Beijing classification" (Sun et al., 2017), hepatic fibrosis is scored into three categories (P-I-R scores). Predominantly progressive (P) presents that more than 50% fibro-septal are wide/broad, loosely aggregated collagen fibers, which are moderate to markedly cellular containing, variably, inflammatory cells, macrophages, and ductular reactions. Predominately regressive (R) shows that more than 50% fibro-septal are thin and densely compacted stroma, which are largely acellular. Indeterminate (I) is defined as an uncertain mix/balance between progressive and regressive scarring. If the examining pathologist cannot conclude as to whether progressive or regressive scarring predominates, or is tempted to reach higher magnification in order to assess the balance, the specimen is categorized as indeterminate (Fig. 2).

Liver stiffness measurements (LSM)

All subjects underwent LSM using FibroScan (EchoSens, Paris, France) on the right lobe of the liver, as previously described (Boursier et al., 2013).
The results were expressed in kilopascals (kPa), and the median value of 10 acquisitions was used for analysis, including only cases with a success rate > 60% and an interquartile range/median ratio < 0.3. The same professionally trained physician performed all of these procedures.

APRI and FIB-4 scores

The aspartate aminotransferase to platelet ratio index (APRI) and the international normalized ratio index (FIB-4) were calculated according to the following formulas: APRI= \(\frac{[\text{AST} (U/L)]}{\text{ULN} (U/L)} \times 100 / \text{PLT} (10^9/L) \), FIB-4 = \(\text{Age (years)} \times \frac{\text{AST} (U/L)}{\text{PLT} (10^9/L) \times [\text{ALT} (U/L)]^{1/2}} \), (ULN, upper limit of normal, the ULN of AST was 50 U/L for males and 40 U/L for females).

Statistical analysis

Statistical analysis was performed using SPSS 21.0 statistical software and Graphpad Prism 5.0. Normally distributed data were expressed as mean ± standard deviation (SD), skewed data as the median (interquartile range). Student's t-test or Mann-Whitney U test were used to compare the statistical differences between two groups. One-way analysis of variance (ANOVA) or Kruskal-Wallis H test was performed for comparisons of values among at least three groups; the least significant difference-t (LSD-
t) test or Nemenyi method was conducted for further comparisons between any two groups. Correlations between variables were calculated using Spearman’s rank order, and the receiver operating characteristic curve (ROC) with a 95% confidence interval (CI) was conducted by using Medcalc (15.6.1) to evaluate the diagnostic value. All P-values were two-tailed and considered significant when lower than 0.05.

Results

Baseline characteristics of study subjects

The demographic, clinical characteristics, and plasma GP73 concentrations of the 232 patients with chronic hepatitis C and 31 healthy controls are shown in Table 1. As fibrosis stages progress, the age ($P < 0.001$), the plasma GP73 ($P < 0.001$) and the liver function-associated biochemical indices ($P < 0.05$), were significantly increased, while the serum ALB levels and the peripheral blood PLT counts were decreased ($P < 0.001$). The AFP levels were gradually increased with the progression of liver fibrosis, but lower than the upper limit of normal (≤ 7 ng/ml). There were no significant differences in gender or body mass index (BMI). Plasma GP73 levels in hepatitis C patients were significantly higher than those in the healthy controls (172.90 ng/ml vs 94.82 ng/ml, $P < 0.001$).

In addition, the demographic and clinical data of 68 patients who received
LSM test are shown in Table 2. Both the serum ALT and total bilirubin levels of the patients were within the upper limit of normal and did not significantly impact the LSM values, although our previous study demonstrated that elevated ALT and bilirubin (≥ 2 ULN) influenced LSM values \[^{13}\].

Relationship between plasma GP73 levels and liver fibrosis degrees

3.2.1 Plasma GP73 levels in chronic hepatitis C patients with different liver fibrosis stages

There was a significant difference in the plasma GP73 levels between the patients with HCV-related liver fibrosis and the healthy controls, \(P < 0.001 \). Significant up-regulations of plasma GP73 levels were observed when the hepatic fibrosis stages (F1~4) increased, \(P < 0.001 \). The plasma GP73 levels in F3 patients were markedly higher than those in F2 patients, \(P = 0.003 \) (Table 1 and Fig. 3a).

To clarify the value of plasma GP73 as a diagnostic biomarker for liver fibrosis in patients with chronic hepatitis C, we compared the efficacy of the plasma GP73, FIB-4, and APRI via the ROC curve. The areas under the ROC curves (AUCs) of GP73, APRI and FIB-4 were 0.73, 0.77, 0.81 for significant fibrosis (F2), 0.77, 0.75 0.82 for advanced fibrosis (F3), and 0.89, 0.77, 0.82 for liver cirrhosis (F4), respectively, \(P < 0.001 \) (Fig. 3b-d).
and Table 3).

Association of plasma GP73 levels and P-I-R categories

According to P-I-R categories, the patients with predominantly progressive hepatic fibrosis exhibited significantly higher levels of plasma GP73 than the patients with predominantly regressive and indeterminate hepatic fibrosis [177.08 (149.35 ~ 205.58) ng/ml vs. 154.00 (121.95 ~ 178.05) ng/ml, \(P = 0.004 \)] (Fig. 3e). With a cut-off value set at 177.8 ng/ml in progressive fibrosis group (P), the AUC for plasma GP73 was 0.73 (95% CI: 0.64-0.81) with a sensitivity of 51.02% and a specificity of 86.21%, while APRI and FIB-4 had no predictive significance (Fig. 3f, Table 4).

Correlations of plasma GP73 and hepatic function reservation

Plasma GP73 levels in patients with HCV-related compensated liver cirrhosis (CLC) were significantly lower than those in patients with decompensated liver cirrhosis (DLC), [189.16 (163.65 ~ 221.70) and 232.50 (174.60 ~ 335.65) ng/ml, \(P = 0.023 \)] (Fig. 4a). According to the serum ALB levels, the plasma GP73 levels were significantly higher in the patients with ALB < 35g/L than those in patients with ALB \(\geq 35g/L \) (264.30 ng/ml vs 165.46 ng/ml, \(P < 0.001 \), Fig. 4b). Correlation analysis of plasma GP73 and serum ALB, peripheral blood PLT indicated that
plasma GP73 levels were negatively correlated with serum ALB levels ($r = -0.476$) and PLT counts ($r = -0.497$, Fig. 4c, d).

Correlation of plasma GP73 levels and hepatic inflammation

With the progression of hepatic inflammation, the plasma GP73 levels were increased gradually, the mean values were 157.55 (127.80 ~ 178.69) ng/ml in inflammatory degree G1 and 172.15 (142.65 ~ 204.85) ng/ml in ≥ G2 groups, respectively ($P = 0.007$, Fig. 4e). ROC analysis in ≥ G2 patients showed that the AUC was 0.68 (95% CI: 0.54-0.73). The sensitivity (Se) was 65.28%, the specificity (Sp) was 69.70%, and the cut-off value was 158.4 ng/ml (Fig. 4f). Through correlation analysis, plasma GP73 levels were positively correlated with serum ALT ($r = 0.422$) and AST levels respectively ($r = 0.364$, Fig. 4g & h).

Discussion

GP73, a resident Golgi-specific transmembrane glycoprotein, is normally expressed in biliary epithelial cells (Mao et al., 2010) and anchored to the cis-Golgi body membrane through a membrane-producing domain. The hydrolysis reaction occurs under the action of furin, and its extracellular domain cleaved and released into the extracellular fluid to form soluble GP73. It is reported that GP73 is an effective and reliable serological
marker for the diagnosis of advanced fibrosis and prediction of the appearance of cirrhosis in patients with chronic hepatitis B (Cao et al., 2017; Liu et al., 2018; Yao et al., 2018). GP73 levels were elevated in the activated hepatic stellate cells (Iftikhar et al., 2004). Our study showed that the plasma GP73 levels in hepatitis C patients were significantly higher than those in the healthy controls, and gradually increased as stage-constant fibrosis progression. The ROC curve analysis presented that the diagnostic efficiency of GP73 for liver cirrhosis was 0.89, with sensitivity 81.40% and specificity 84.05%. One study performed by Qian et al. reported the lower efficiency of GP73 diagnosis HCV-related liver cirrhosis, in which the value is limited in comparison with APRI and FIB-4 (Qian et al., 2019). Further, there were significant differences in plasma GP73 levels between patients with compensated liver cirrhosis and those with decompensated liver cirrhosis. It demonstrated that plasma GP73 levels were associated with chronic HCV infection and the development of HCV-related liver fibrosis.

In our study, liver sections were classified into three types according to the "Beijing classification, P-I-R categories" of liver fibrosis to investigate whether plasma GP73 could predict the progression or regression of HCV-related liver fibrosis (Sun et al., 2017). The results presented that the plasma GP73 levels in patients with predominantly progressive (P) hepatic fibrosis were significantly higher than those in patients with predominately
regressive (R) / indeterminate (I) hepatic fibrosis, and the levels of plasma GP73 were elevated in parallel with the severity of hepatic fibrosis from stage 1 to stage 4, especially in liver cirrhosis. Our findings suggested that GP73 could serve as a novel biomarker to predict regression or progression of HCV-induced hepatic fibrosis, as in HBV-induced hepatic fibrosis (Wei et al., 2013; Xu et al., 2015), and might be an essential tool in the therapy management of liver disease. Mauro et al. (Mauro et al., 2018) found that the presence of thick fibrous septa in patients may indicate the progression of fibrosis. D'Ambrosio and colleagues (D'Ambrosio et al., 2018) reported that the incidence of hepatocellular carcinoma in progressive fibrosis patients was significantly higher compared with that in regression or stable fibrosis patients after achieving sustained virological response (SVR). The APRI and FIB-4 scoring systems appeared to have no predictive prognostic value over the P-I-R categories of hepatic fibrosis, even though they were recommended in the diagnosis of advanced liver fibrosis. Plasma GP73 concentrations contribute to the recognition and benefit the physician in managing progressive hepatitis C patients.

Apart from the degree of liver fibrosis, we also explored the correlation of the plasma GP73 and liver function reservation. The GP73 levels in patients with ALB < 35g/L were much higher than those in patients with ALB ≥ 35g/L. Spearman's correlation analysis showed that plasma GP73 levels were negatively correlated with ALB, as well as the peripheral blood
PLT counts. These changes were consistent with decompensated liver cirrhosis. It further demonstrated that plasma GP73 levels were increased with the progression of liver injury, especially liver cirrhosis, and decrease of liver function reservation (Liu et al., 2018; Qian et al., 2019), thus, based on our results, high plasma GP73 levels (more than 264.3 ng/ml) may potentially indicate a poor prognosis for HCV-related liver cirrhosis.

Our previous studies (Wang et al., 2015) had found that hepatic inflammation, elevated serum ALT, AST, and bilirubin influence diagnosis values of APRI and FIB-4. Some other studies preferred GP73 to be a new effective biomarker for diagnosing liver necroinflammation (Xu et al., 2015, 2018; Xia et al., 2019; Wei et al., 2019). Does the hepatic inflammation also influence hepatic GP73 expression and increase the levels of peripheral blood GP73 concentration? Based on histopathology of the livers, this study showed that plasma GP73 levels were up-regulation in patients with remarkable hepatic inflammation in chronic hepatitis C patients. A similar tendency of GP73 appeared in patients with elevated ALT. It is reported that along with reduced liver necroinflammation, the serum GP73 concentration also gradually declined in chronic hepatitis B patients (Xu et al., 2015). Therefore, when GP73 was used to diagnose liver fibrosis, the degree of hepatic inflammation should be considered, and repeated tests of GP73 are necessary when the patient has recovered from necroinflammatory liver injury.
In addition, there are still limitations of our study, such as unmeasured potential biases because the study is based on a retrospective cohort, and the cases are from only one center. Meanwhile, the application of P-I-R classification in the assessment of liver fibrosis is also inadequate. Thus, multicentered prospective studies with a larger cohort are necessary in the future to evaluate the diagnostic potency of GP73.

In conclusion, plasma GP73 might be an important biomarker for diagnosis, evaluation of regression or progression of liver fibrosis, and an independent prognostic predictor of chronic hepatitis C and hepatic decompensation of patients with liver cirrhosis. A large scale of clinical studies on the application of the plasma GP73 alone and combined with APRI, FIB-4, or liver stiffness measurement would be of benefit to the diagnosis and therapy of liver fibrosis and cirrhosis at an early stage.

Author's contributions

LL and ZA performed the experiments and wrote the manuscript. LL, XY and LC performed histology analysis. LL, YY and YZ collected blood samples and data for this study. NF and WZ participated in the revision of the manuscript. YN designed the experiments and participated in the revision of the manuscript.
Data availability

The datasets generated and analyzed during the present study are available from the corresponding author on reasonable request.

Funding

The research was supported by Key Research and Development Program of Hebei Province (No: 19277779D), Government-funded clinical talents project of Hebei province (2016), National Natural Science Foundation of China (81700525) and Natural Science Foundation of Hebei Province (H2018206384).

Conflict of interest

The authors declare no conflict of interest.

Statement of human rights

All procedures performed in studies were in accordance with the ethical standards of Institute Research Ethics Committee of the Third Hospital of Hebei Medical University. The entire study was approved by the Human Ethics Committee, Third Hospital of Hebei Medical University.
Abbreviations:
GP73, Golgi protein 73; HCV, hepatitis C virus; CHC, chronic hepatitis C; APRI, aspartate aminotransferase to platelet ratio index; FIB-4, fibrosis index based on four factors; ELISA, enzyme-linked immunosorbent assay; ROC, receiver operating characteristic curve; HIV, human immunodeficiency virus; qRT-PCR, quantitative polymerase chain reaction; ALB, albumin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma glutamyl transpeptidase; PLT, platelet; H & E, hematoxylin and eosin; LSM, liver stiffness measurements; BMI, body mass index; AUC, areas under the receiver operating characteristic curve; CLC, compensated liver cirrhosis; DLC, decompensated liver cirrhosis

Reference

Lu F. and Zhang Y. (2018). Diagnostic application of serum GP73 and the relevant mechanism in the diagnosis of liver cirrhosis. Zhonghua Gan
Mao Y., Yang H., Xu H., Lu X., Sang X., Du S., Zhao H., Chen W., Xu Y.,
Chi T., Yang Z., Cai J., Li H., Chen J., Zhong S., Mohanti S.R., Lopez-
(GOLPH2) is a valuable serum marker for hepatocellular carcinoma.
Gut. 59, 1687-1693.

Mauro E., Crespo G., Montironi C., Londoño M.C., Hernández-Gea V.,
Ruiz P., Sastre L., Lombardo J., Mariño Z., Díaz A., Colmenero J.,
Rimola A., García-Pagán J.C., Brunet M., Forns X. and Navasa M.
(2018). Portal pressure and liver stiffness measurements in the
prediction of fibrosis regression after sustained virological response in
recurrent hepatitis C. Hepatology. 67, 1683-1694.

Qian X., Zheng S., Wang L., Yao M., Guan G., Wen X., Zhang L., Xu Q.,
Chen X., Zhao J., Duan Z. and Lu F. (2019). Exploring the Diagnostic
Potential of Serum Golgi Protein 73 for Hepatic Necroinflammation
and Fibrosis in Chronic HCV Infection with Different Stages of Liver

Sterling R.K., Sterling R.K., Lissen E., Clumeck N., Sola R., Correa M.C.,
Montaner J., Sulkowski M.S., Torriani F.J., Dieterich D.T., Thomas
(2006). Development of a simple non-invasive index to predict
43, 1317-1325.

Figure legends

Fig 1. The composition of enrolled patients. CLC: compensated liver cirrhosis; DLC: decompensated liver cirrhosis.

Fig 2. Hepatic inflammation activity grades, fibrosis stages and P-I-R classification in the chronic hepatitis C patients. a-b. The different liver fibrosis stages assessed by H&E (magnification, x200) and Masson trichrome staining (magnification, x100). c. P-I-R scores assessed by H&E and Masson (magnification, x40). H&E: hematoxylin and eosin.

Fig 3. Association of plasma GP73 levels and stages of liver fibrosis. a. Differences of plasma GP73 levels among the health controls (HC) and HCV patients with different fibrosis stages, which were significant
different between HC and HCV patients, and with different degrees of hepatic fibrosis. b-d. The analysis of ROC curves indicated that plasma GP73 AUCs were gradually increased with progression of liver fibrosis stages. e. The comparison of plasma GP73 between the P and I/R groups. f. ROC curves of plasma GP73, FIB-4 and APRI for diagnosis of progressive fibrosis.

Fig 4. Relationship of plasma GP73 levels and liver synthesis function and inflammation. The plasma GP73 levels were correlated with liver function reservation (a & b) and inflammation grades (e), negatively correlated with serum ALB levels and peripheral blood PLT counts (c & d) and positively correlated with ALT and AST (g & h). f. ROC curve of plasma GP73 for diagnosing inflammation grade \(\geq 2 \).
Table 1 Clinical characteristics and plasma GP73 levels of the HCV patients and health controls

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Healthy Control</th>
<th>Stages of hepatic fibrosis</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gender (M/F)</td>
<td>n=31</td>
<td>F1 (n=63)</td>
<td>F2 (n=50)</td>
<td>F3 (n=50)</td>
<td>F4 (n=69)</td>
</tr>
<tr>
<td>Age, median (IQR)</td>
<td></td>
<td></td>
<td>47.50 (45.7, 56.00)</td>
<td>51.00 (47.5, 56.50)</td>
<td>55.00 (49.00, 61.00)</td>
<td>59.00 (52.00, 65.50)</td>
</tr>
<tr>
<td>BMI (kg/m²), median (IQR)</td>
<td></td>
<td></td>
<td>22.38 (20.69, 24.29)</td>
<td>24.03 (22.04, 26.37)</td>
<td>25.56 (23.18, 27.34)</td>
<td>25.10 (23.18, 27.04)</td>
</tr>
<tr>
<td>ALB (mean ± SD, g/L)</td>
<td></td>
<td></td>
<td>44.92 ±2.61</td>
<td>46.36 ± 4.29</td>
<td>44.13±4.12</td>
<td>43.77±4.21</td>
</tr>
<tr>
<td>ALT (U/L), median (IQR)</td>
<td></td>
<td></td>
<td>12.50 (10.00, 16.00)</td>
<td>22.00 (13.00, 41.00)</td>
<td>41.00 (18.25, 67.00)</td>
<td>30.00 (18.00, 48.25)</td>
</tr>
<tr>
<td>AST (U/L), median (IQR)</td>
<td></td>
<td></td>
<td>16.00 (14.00, 19.00)</td>
<td>22.00 (18.50, 28.50)</td>
<td>29.50 (22.00, 49.25)</td>
<td>35.50 (22.00, 52.75)</td>
</tr>
<tr>
<td>GGT (U/L), median (IQR)</td>
<td></td>
<td></td>
<td>18.00 (14.00, 20.25)</td>
<td>23.00 (16.00, 34.00)</td>
<td>29.00 (20.75, 68.00)</td>
<td>36.50 (24.00, 63.00)</td>
</tr>
<tr>
<td>PLT (mean ± SD, 10⁹/L)</td>
<td></td>
<td></td>
<td>220.59±49.08</td>
<td>192.50±57.83</td>
<td>163.56±43.96</td>
<td>156.39±47.37</td>
</tr>
<tr>
<td>AFP (mean ± SD, ng/ml)</td>
<td></td>
<td></td>
<td>-</td>
<td>2.90±1.11</td>
<td>3.25±1.51</td>
<td>3.21±1.68</td>
</tr>
<tr>
<td>GP73 (ng/ml), median (IQR)</td>
<td></td>
<td></td>
<td>94.82 (85.39, 104.76)</td>
<td>151.30 (123.10, 170.10)</td>
<td>157.90 (132.00, 172.60)</td>
<td>181.70 (149.43, 219.05)</td>
</tr>
<tr>
<td>APRI, median (IQR)</td>
<td></td>
<td></td>
<td>0.19 (0.12, 0.26)</td>
<td>0.30 (0.23, 0.47)</td>
<td>0.64 (0.29, 1.12)</td>
<td>0.49 (0.31, 0.81)</td>
</tr>
<tr>
<td>FIB-4, median (IQR)</td>
<td></td>
<td></td>
<td>0.96 (0.79, 1.65)</td>
<td>1.01 (0.77, 1.73)</td>
<td>1.95 (1.01, 2.72)</td>
<td>1.95 (0.91, 2.37)</td>
</tr>
</tbody>
</table>

Continuous variables were expressed as mean ± standard deviation (SD) or median and interquartile range (IQR). BMI: body mass index; TBIL: total bilirubin; ALT: alanine aminotransferase; AST: aspartate aminotransferase; GGT: gamma glutamyltransferase; ALB: albumin; PLT: platelet; AFP: α-fetoprotein; GP73: Golgi protein 73; APRI, The aspartate aminotransferase to platelet ratio index; FIB-4, the international normalized ratio index.
Table 2 Demographic and clinical characteristics of the patients who received liver stiffness testing

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Stages of hepatic fibrosis</th>
<th>F / X^2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F1 (n=23)</td>
<td>F2 (n=24)</td>
<td>F3 (n=21)</td>
</tr>
<tr>
<td>Gender (M/F)</td>
<td>12/11</td>
<td>12/12</td>
<td>9/12</td>
</tr>
<tr>
<td>Age, median (IQR)</td>
<td>50 (31, 59)</td>
<td>54 (50, 56)</td>
<td>57 (52, 63)</td>
</tr>
<tr>
<td>BMI (kg/m^2), median (IQR)</td>
<td>24.04 (21.82, 25.93)</td>
<td>27.18 (24.03, 29.07)</td>
<td>26.83 (22.73, 27.96)</td>
</tr>
<tr>
<td>ALB (mean ± SD, g/L)</td>
<td>46.57±3.37</td>
<td>45.96±3.40</td>
<td>42.91±5.30</td>
</tr>
<tr>
<td>ALT (U/L), median (IQR)</td>
<td>19.0 (10.5, 27.5)</td>
<td>24.0 (14.0, 38.5)</td>
<td>27.5 (20.5, 76.8)</td>
</tr>
<tr>
<td>AST (U/L), median (IQR)</td>
<td>21.0 (16.0, 34.5)</td>
<td>29.0 (15.5, 38.0)</td>
<td>37.0 (22.5, 50.3)</td>
</tr>
<tr>
<td>GGT (U/L), median (IQR)</td>
<td>20.0 (14.6, 35.0)</td>
<td>18.5 (15.0, 23.3)</td>
<td>28.5 (20.5, 71.5)</td>
</tr>
<tr>
<td>TB (µmol/L), median (IQR)</td>
<td>17.44 (11.49, 21.63)</td>
<td>14.55 (11.3, 20.55)</td>
<td>12.39 (10.20, 18.23)</td>
</tr>
<tr>
<td>PLT (mean ± SD, 10^9/L)</td>
<td>178.09±48.92</td>
<td>151.00±37.04</td>
<td>142.00±39.92</td>
</tr>
<tr>
<td>GP73 (mean ± SD, ng/ml)</td>
<td>137.23±33.72</td>
<td>147.44±54.96</td>
<td>207.69±56.43</td>
</tr>
<tr>
<td>APRI, median (IQR)</td>
<td>0.29 (0.24, 0.55)</td>
<td>0.60 (0.27, 0.78)</td>
<td>0.63 (0.39, 0.81)</td>
</tr>
<tr>
<td>FIB-4, median (IQR)</td>
<td>1.44 (0.81, 2.46)</td>
<td>1.95 (1.25, 2.74)</td>
<td>2.09 (1.73, 2.81)</td>
</tr>
</tbody>
</table>

Continuous variables were expressed as mean ± standard deviation (SD) or median and interquartile range (IQR). BMI: body mass index; TBIL: total bilirubin; ALT: alanine aminotransferase; AST: aspartate aminotransferase; GGT: gamma glutamyl transferase; ALB: albumin; PLT: platelet; GP73: Golgi protein 73; APRI, The aspartate aminotransferase to platelet ratio index; FIB-4, the international normalized ratio index.

Table 3 GP73, APRI and FIB-4 diagnosis efficacy in HCV fibrosis (ROC curve analysis)

<table>
<thead>
<tr>
<th>Fibrosis stages</th>
<th>Items</th>
<th>Cut-off</th>
<th>AUC</th>
<th>Sc, %</th>
<th>Sp, %</th>
<th>95%CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>F ≥ 2 (n=169)</td>
<td>GP73</td>
<td>179.00</td>
<td>0.73</td>
<td>51.48</td>
<td>85.71</td>
<td>0.668, 0.786</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>APRI</td>
<td>0.55</td>
<td>0.77</td>
<td>65.71</td>
<td>83.67</td>
<td>0.707, 0.831</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>FIB-4</td>
<td>1.84</td>
<td>0.81</td>
<td>74.44</td>
<td>80.85</td>
<td>0.746, 0.865</td>
<td>0.001</td>
</tr>
<tr>
<td>F ≥ 3 (n=119)</td>
<td>GP73</td>
<td>179.00</td>
<td>0.77</td>
<td>61.03</td>
<td>81.42</td>
<td>0.712, 0.824</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>APRI</td>
<td>0.73</td>
<td>0.75</td>
<td>56.86</td>
<td>82.61</td>
<td>0.687, 0.812</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>FIB-4</td>
<td>1.66</td>
<td>0.82</td>
<td>84.00</td>
<td>65.96</td>
<td>0.756, 0.870</td>
<td>0.001</td>
</tr>
<tr>
<td>F ≥ 4 (n=69)</td>
<td>GP73</td>
<td>206.3</td>
<td>0.89</td>
<td>81.40</td>
<td>84.05</td>
<td>0.836, 0.927</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>APRI</td>
<td>0.84</td>
<td>0.77</td>
<td>61.90</td>
<td>82.11</td>
<td>0.702, 0.835</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>FIB-4</td>
<td>2.14</td>
<td>0.82</td>
<td>83.33</td>
<td>67.77</td>
<td>0.753, 0.876</td>
<td>0.001</td>
</tr>
</tbody>
</table>

GP73, Golgi protein 73; APRI, The aspartate aminotransferase to platelet ratio index; FIB-4, the international normalized ratio index. AUC, areas under the receiver operating characteristic curve.
Table 4 GP73, APRI and FIB-4 in diagnosis of the progressive fibrosis (ROC curve analysis)

<table>
<thead>
<tr>
<th>values</th>
<th>Cut-off</th>
<th>AUC</th>
<th>95%CI</th>
<th>Se, %</th>
<th>Sp, %</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP73 (ng/ml)</td>
<td>177.80</td>
<td>0.73</td>
<td>0.636, 0.811</td>
<td>51.02</td>
<td>86.21</td>
<td>0.0001</td>
</tr>
<tr>
<td>APRI</td>
<td>0.66</td>
<td>0.60</td>
<td>0.479, 0.713</td>
<td>32.76</td>
<td>93.33</td>
<td>0.1888</td>
</tr>
<tr>
<td>FIB-4</td>
<td>1.20</td>
<td>0.59</td>
<td>0.463, 0.712</td>
<td>63.46</td>
<td>61.54</td>
<td>0.3257</td>
</tr>
</tbody>
</table>

GP73, Golgi protein 73; APRI, The aspartate aminotransferase to platelet ratio index; FIB-4, the international normalized ratio index. AUC, areas under the receiver operating characteristic curve.
232 patients with chronic hepatitis C

Fibroscan
N = 68
- F1, n = 23
- F2, n = 24
- F3, n = 21

Liver biopsy
N = 107
- METAVIR scoring system
 - Inflammation Grade
 - G1, n = 34 (31.78%)
 - G2, n = 63 (58.88%)
 - G3, n = 10 (9.34%)
 - Fibrosis Stages
 - F1, n = 40 (37.38%)
 - F2, n = 28 (26.17%)
 - F3, n = 29 (27.10%)
 - F4, n = 10 (9.35%)

CT/ Ultrasound
N = 57
- Beijing Classification
 - P, n = 49 (45.79%)
 - I, n = 35 (32.71%)
 - R, n = 23 (21.50%)
a)
HE stain, 200 X

b)
Masson stain 100 X

c)
HE stain 40 X
Masson stain 40 X
HISTOLOGY AND HISTOPATHOLOGY

(a) Box plots showing GP73 levels (ng/ml) across different fibrosis stages (HC, F1, F2, F3, F4).

(b) ROC curve comparing F≥2 vs. F1 for GP73 and other markers.

(c) ROC curve comparing F≥3 vs. F1-2 for GP73 and other markers.

(d) ROC curve comparing F4 vs. F1-3 for GP73 and other markers.

(e) Box plots showing GP73 levels across different stages (P, I+R).

(f) ROC curve showing sensitivity vs. 1 - specificity for GP73 and other markers.
HISTOLOGY AND HISTOPATHOLOGY

a

GP73 (ng/ml) vs. CLC and DLC

- P = 0.023

b

GP73 (ng/ml) vs. ALB ≥ 35 g/L and ALB < 35 g/L

- P < 0.001

c

GP73 (ng/ml) vs. PLT (×10^9/L)

- r = -0.4972, P < 0.001

d

GP73 (ng/ml) vs. ALB (g/L)

- r = -0.4725, P < 0.001

e

GP73 (ng/ml) vs. G1 and ≥ G2

- P = 0.007

f

Sensitivity vs. 1 - Specificity

- GP73 vs. Identity

g

GP73 (ng/ml) vs. AST (U/L)

- r = 0.4220, P < 0.001

h

GP73 (ng/ml) vs. ALT (U/L)

- r = 0.3789, P < 0.001