
Summary. Adult stem cells represent a fundamental
biological system that has fascinated scientists over the
last decades, and are currently the subject of a large
number of studies aimed at better defining the properties
of these cells, with a prominent focus on improving their
application in regenerative medicine. One of the most
used adult stem cells in clinical trials are mesenchymal
stem cells (MSCs), which are multipotent cells able to
differentiate into mature cells of mesodermal lineages.
Following the initial studies on MSCs isolated from
bone marrow, similar cells were also isolated from a
variety of fetal and adult human tissues. Initially
considered as identical and equipotent, MSCs from
tissues other than bone marrow actually display
differences in terms of their plastic abilities, which can
be ascribed to the tissue of origin and/or to the
procedures used for their isolation. Moreover, results
from additional studies suggest that cultured MSCs
represent the in vitro version of a subset of in vivo
resident cells localized in the perivascular environment.
In this review, we will focus our attention on MSCs from
tissues other than bone marrow, their in vivo localization
and their current applications in clinics. 
Key words: Mesenchymal stem cells, Perivascular
environment, Pericytes, Perivascular cells, Regenerative
medicine

Historical introduction on MSCs

Cells of many tissues in the adult organism need
constant replacement in order to sustain their
physiological functions. This never-ending process goes
from the maintenance of homeostasis (cellular turnover)
within and between tissues, to tissue repair. These
regenerative abilities of adult tissues are due to the
presence of intrinsic progenitors or stem cells. The
identification of this class of cells has attracted the
interest of scientists for a long time, leading to the
development of a novel branch of biomedical research,
regenerative medicine, which aims to develop cell stem
based therapies to cure some human diseases.

Following the pioneering studies by Till and
McCulloch that provided the initial evidence on the
presence of hematopoietic stem cells, bone marrow
became the most studied and characterized source of
postnatal stem cells (McCulloch and Till, 1960; Bianco,
2015; Gao et al., 2018). These studies resulted in the
identification within the bone cavity of two different
systems of adult stem cells: hematopoietic and stromal
cells. However, while embryological origin,
physiological role and differentiation abilities of
hematopoietic stem cells have been accurately defined
(Dzierzak and Speck, 2008; Medvinsky et al., 2011), less
is known about stromal cells.

Bone marrow stromal cells were first described by
Owen and Friedestein as plastic adherent cells with the
ability to differentiate into skeletal tissues in vitro. These
cells represent the progenitors that give rise to a self-
renewing population of stromal cells following in vitro
culture. When transplanted into a competent
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environment, these cells are able to regenerate a bone
niche (stroma and bone) that is capable of creating a
permissive environment (niche) for hematopoietic cells
(Owen and Friedenstein, 1988). In 1991, adult bone
marrow stromal cells were named Mesenchymal Stem
Cells (MSCs), by analogy with the embryonic
mesenchymal cells that are able to give rise to all
skeletal elements of the body (Caplan, 1991). Bone
marrow MSCs (bm-MSCs) are currently considered as
postnatal skeletal stem cells due to their localization
(skeleton), their differentiation commitment
(skeletogenesis) and their in vivo ability to recreate the
bone niche (Bianco et al., 2006; Robey and Bianco,
2006). Bm-MSCs thus play a fundamental role in the
maintenance of bone marrow environment homeostasis,
being responsible for bone niche growth, turnover and
regeneration (Bianco, 2014).

Starting from the initial studies in bone marrow,
several laboratories have provided evidence that
multipotent cells, nearly undistinguishable from bm-
MSCs in terms of morphology, immunophenotype and in
vitro multipotent abilities, can be isolated from several
adult and fetal human tissues (Murray et al., 2014). A
common property of these cells is their ability to
differentiate, under appropriate cell culture conditions,
into cells of the mesodermal lineage, such as osteocytes,
adipocytes and chondrocytes (Zuk et al., 2001; Sabatini
et al., 2005; Dominici et al., 2006). With the factual
possibility to isolate MSCs from virtually all human
organs, the International Society for Cellular Therapy
stated the minimum requirements to consider primary
isolated cells as MSCs. MSCs are currently defined as
plastic adherent cells, expressing CD73, CD90, CD105,
and negative for CD45, CD34, CD14, CD11b, CD79α,
CD19 and HLA-DR. In addition, MSCs must be able to
differentiate into osteocytes, adipocytes and
chondrocytes after in vitro differentiation induction
(Dominici et al., 2006).

However, in spite of fulfilling the same
identification criteria, bm-MSCs and MSCs isolated
from other adult or fetal tissues are two separate entities.
Indeed, bm-MSC, beyond behaving as skeletal stem
cells, can also preserve the hematopoietic stem cell niche
and are able to sustain hematopoiesis by recapitulating
and regulating the hematopoietic environment (Bianco,
2014; Crane et al., 2017). In agreement with these
findings, further studies aimed to address bm-MSCs
origin and localization in vivo , revealed that these cells
represent the in vitro counterpart of adventitial reticular
cells (ARCs), thus establishing a strong connection
between the properties of physiological resident cells
and cultured cells. ARCs, in fact, are the bone marrow
stromal supportive cells, and are localized around the
sinusoidal network in direct contact with the endothelial
cells that surround it (Bianco and Gehron Robey, 2000;
Short et al., 2003; Jones and McGonagle, 2008). In
marked contrast, MSCs isolated from other tissues have
no impact on the regulation of hematopoietic
environment, although they may be involved in the

regulation of additional tissue-specific mechanisms, as
discussed later. Moreover, despite being defined by
specific criteria, it is accepted that MSCs represent a
heterogeneous cell population containing different cell
types, which may vary depending on the tissue of origin
and on the isolation procedures (Pevsner-Fischer et al.,
2011; Chen et al., 2012, 2013). Accordingly, MSC
subpopulations expressing specific markers and
endowed with distinctive differentiation potentials and
proliferation rates, can be obtained from most tissues
(De Ugarte et al., 2003; Vogel et al., 2003; Mihu et al.,
2008; Battula et al., 2009; Murray et al., 2014). In this
review, we will discuss available data on MSCs isolated
from the stroma of adult organs and their relation with
perivascular progenitors/stem cells. We will discuss
current knowledge about the localization of these cells in
vivo , their physiological role and their effective and/or
conceivable translational applications. Namely, we will
use the term MSCs to refer to mesenchymal stem cells
isolated from the stroma of tissues other than bone
marrow according to the reported criteria (Dominici et
al., 2006), while we will refer to the latter as bm-MSC. 
Perivascular origin of MSCs

The reported association between bm-MSCs and the
perivascular compartment, which led to define bm-
MSCs as the in vitro counterpart of the ARCs (Bianco,
2014), and the evidence that blood vessels are present in
all adult and fetal tissues from which MSCs could be
isolated, suggested a close relation between MSCs and
in vivo perivascular cells. In agreement with this
hypothesis Shi and Gronthos showed that MSCs isolated
from dental pulp originate from the perivascular
compartment (Shi and Gronthos, 2003).

First reports on perivascular cells were published at
the end of the 19th century, when they were described by
the French physiologist C. Rouget (Rouget, 1873). The
name pericytes was introduced fifty years later by K.W.
Zimmermann, who observed the presence of three
different subtypes of pericytes along the vasculature,
including a transitional form of smooth muscle cells,
pointing to the identification of new perivascular cell
types in addition to endothelial and smooth muscle cells
(Zimmermann, 1923; Krueger and Bechmann, 2010).
Nonetheless, only in the mid 80s electron microscopy
imaging revealed that pericytes establish intimate
contacts with endothelial cells, surrounding all the blood
vessels with their cytoplasmic elongations (Weibel,
1974; Sims, 1986). Further studies showed that pericytes
are enclosed within the basal membrane of small vessels,
like capillaries, venules or small arterioles (Sims, 1991;
Allt and Lawrenson, 2001). In situ analysis allowed the
identification of different surface markers shared by
pericytes that reside in different tissues. Pericytes
express at least one of the following markers: CD146,
Neural/glial antigen 2 (NG2), Beta-type platelet-derived
growth factor receptor (PDGFR-β) and Alkaline
phosphatase (AP), while they do not express endothelial
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markers such as CD31, CD34, Von Willebrand factor
and CD144, and are also negative for the expression of
the pan-hematopoietic marker CD45 (Dellavalle et al.,
2007; Tonlorenzi et al., 2007; Crisan et al., 2008;
Quattrocelli et al., 2012). Based on these studies, in vivo
pericytes have been defined according to their
anatomical localization and to the expression of specific
markers (Crisan et al., 2008; Souza et al., 2016).

At the end of the 90s, a study on cultured pericytes
isolated from bovine retinal capillaries showed that these
cells were able to differentiate into different mesodermal
lineages in vitro (Doherty et al., 1998). Further studies
on cultured pericytes isolated from different adult and
fetal tissues demonstrated that these cells were able to
differentiate into osteocytes, adipocytes, chondrocytes
and muscle cells, confirming their mesodermal
multipotential properties (De Angelis et al., 1999;
Dellavalle et al., 2007; Tonlorenzi et al., 2007; Crisan et
al., 2008; Quattrocelli et al., 2012). The initial idea that
pericytes exclusively surround microvessels was later
challenged by the observation of pericyte-related cells
also encircling large vessels (Andreeva et al., 1998).
Accordingly, studies on perivascular cells surrounding
arteries revealed the presence of another class of
perivascular cells, named adventitial cells. Indeed,
adventitial cells are present in the tunica adventitia of
large blood vessels such as arteries and veins (Hu et al.,
2004; Campagnolo et al., 2010; Hu and Xu, 2011; Souza
et al., 2016). The ability of these cells to differentiate
into smooth muscle cells suggested a direct role as
progenitors in vascular remodeling (Zengin, 2006; Hu
and Xu, 2011; Majesky et al., 2011; Souza et al., 2016).
Additional studies indicated that human adventitial cells,
similarly to pericytes, were able to differentiate into
adipocytes, osteoblasts and myofibroblasts after in vitro
expansion (Hoshino et al., 2008; Corselli et al., 2012). A
study by Pèault and collaborators showed that adventitial
cells can be typified as CD34+ CD31- CD146- CD45-
resident cells, which differs from the immunophenotype
of pericytes from small vessels (Corselli et al., 2012).
Interestingly, these authors also showed that, under
appropriate in vitro conditions, adventitial cells could
acquire a pericyte-like immunophenotype suggesting the
presence of a CD34+ CD31- perivascular cell population
that could behave as progenitors of pericytes (Yoshimura
et al., 2006; Corselli et al., 2012). 

Studies over the past years have provided evidence
that pericytes and adventitial cells isolated using distinct
preparative methods, and following in vitro expansion,
express a common range of surface markers and present
a collective ability to differentiate into at least three
basic connective tissue lineages (i.e. adipocytes,
chondrocytes and osteocytes). These findings, together
with the evidence that perivascular cells natively express
MSCs markers in vivo, strongly indicated that MSCs can
be associated with cultured perivascular cells (Crisan et
al., 2008). Nevertheless, depending on the isolation
procedures applied and the tissue of origin, additional
distinguishing properties can be observed in isolated

MSCs or perivascular cells, which is likely to reflect the
original presence of heterogeneous populations of
stem/progenitor cells in the stroma of most adult organs
(Muraglia et al., 2000; Guilak et al., 2006; Russell et al.,
2010; Manini et al., 2011). Moreover, the use of specific
markers to isolate perivascular cells, such as CD146 or
AP to identify pericytes, and CD34 to identify
adventitial cells, suggests that even if perivascular cells
share the same in vitro mesodermal abilities with MSCs,
different cell subpopulations coexist in the perivascular
environment. Therefore, based on the isolation
procedure used, we shall refer to the isolated population
of stem/progenitor cells as cultured pericytes or cultured
adventitial cells to distinguish these cell populations
from the more heterogeneous population of MSCs
obtained exploiting the protocol initially applied to
isolate bm-MSCs (Pittenger et al., 1999; Zuk et al.,
2001; Sabatini et al., 2005; Dominici et al., 2006).
in vivo role of perivascular cells

The activation of cells of the perivascular
compartment has been observed under inflammatory
conditions and following induction of tissue damage
(Díaz-Flores et al., 2009; Armulik et al., 2011). Studies
on a rat model showed that 40% of pericytes migrate
from the vessels into the parenchyma after a traumatic
brain injury (Dore-Duffy et al., 2000; Chapel et al.,
2003). This migratory ability of pericytes is regulated by
specific transmembrane proteins that allow
pericytes/endothelial cell interactions. One
transmembrane protein expressed by pericytes and
involved in this interaction is the PDGFR-β (Dellavalle
et al., 2007; Crisan et al., 2008; Winkler et al., 2010).
Endothelial cells, by releasing platelet-derived growth
factor subunit B (PDGF-B), the PDGFR-β ligand,
activate a signal transduction that allows the recruitment
of PDGFR-β-expressing pericytes during angiogenesis
and tissue remodeling (Armulik et al., 2011). The
disruption of the PDGFR-β-mediated interaction
between endothelium and pericytes leads to aberrant
vasculature remodeling (Benjamin et al., 1998) and,
during embryonic development, lack of PDGF-B and/or
PDGFR-β signaling leads to the development of
hematological, renal and placental abnormalities that
cause hemorrhages (Levéen et al., 1994; Lindahl, 1997;
Hellström et al., 1999). Although PDGF-B deficiency
results in pathological detachment of pericytes from the
blood vessels of PDGF-B knockout mouse (Lindahl,
1997), it has been argued that the detachment of
pericytes from the vessels is required to activate and
address pericytes towards the regenerative mechanisms
(Caplan and Correa, 2011; Caplan and Hariri, 2015).
These latter aspects outline the importance of cell-cell
contacts in the perivascular niche and indicate how the
regulation of cell-cell interactions, via PDGF-B/
PDGFR-β for instance, may affect pericyte recruitment
and activation. 

Although several studies suggest that cultured
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perivascular cells can self-renew and differentiate into
functional cell types of a given tissue (see next section),
a strict in vivo proof of their multipotent abilities is still
missing, and the extent of perivascular cells involvement
in tissue regeneration is still debated. Lineage tracing
studies reported that a specific spinal cord pericyte
subtype contributes to scar-forming stromal cells during
post-injury responses, and that NG2+ pericytes of the
dental pulp can differentiate into odontoblasts during
tooth growth and in response to damage (Feng et al.,
2011; Goritz et al., 2011; Cano et al., 2017). Notably,
Cossu and collaborators reported that direct recruitment
of pericytes in tissue regeneration also occurs in skeletal
muscle. Using a transgenic mouse model in which AP+
endogenous pericytes are traced by beta-galactosidase
expression, these authors demonstrated that skeletal
muscle pericytes contribute to both blood vessels and
skeletal muscle fiber development during physiological
mouse growth (Dellavalle et al., 2011). In contrast with
these findings, pericyte involvement in tissue
remodeling and/or regeneration has been recently
challenged by Evans and colleagues (Guimarães-
Camboa et al., 2017). In the study, the authors focused
their attention on a specific subpopulation of pericytes
expressing Tbx18, a protein expressed in all mural cells
(including pericytes) of several, but not all, mouse adult
organs. Lineage-tracing experiments, performed on the
inducible Tbx18-CreERT2 mouse model, revealed that
Tbx18+ pericytes do not differentiate into other cell
lineages in aging or during regenerative processes.
Accordingly, the authors concluded that adult
endogenous pericytes do not behave as multipotent
progenitors in vivo (Guimarães-Camboa et al., 2017).
However, it is worth noting that in the inducible Tbx18-
CreERT2 mouse model, Tbx18 positive pericytes could
not be detected in kidney, liver, pancreas and gastro-
intestinal tract, although the presence of pericytes has
been widely reported in these organs (Crisan et al., 2008;
Richards et al., 2010; Powell et al., 2011; Hellerbrand,
2013; Stefanska et al., 2016). Taking these data in
consideration, it would appear that the Tbx18-CreERT2
mouse model system identifies only a subset of
tissue/organ specific pericytes, suggesting that the
absence of in vivo pericytes with multipotent properties
observed by Evans and colleagues (Guimarães-Camboa
et al., 2017) may only reflect the properties of a specific
subpopulation of Tbx18-positive pericytes. Accordingly,
it is important to consider that the results from lineage-
tracing experiments have been obtained from formally
distinct pericytes (i.e. PDGFR-β, NG2, AP and Tbx18
expressing pericytes), whose differentiation potential
towards a definite cell type have been tracked within a
specific tissue.

Additional data suggest that perivascular cells can
further participate in tissue regeneration by acting as
recruiters, modulators and activators of other cell types
(Caplan and Correa, 2011; Somoza et al., 2016). By
exerting a trophic effect on cells at site of injuries,
perivascular cells can therefore contribute to form a

regenerative microenvironment that supports the healing
process (Chen et al., 2009; García-Gómez et al., 2010;
Morigi et al., 2010; Caplan and Correa, 2011). Indeed,
given their localization around vessels, perivascular cells
have the possibility to interact and recruit many different
cell types ranging from cells of the immune system to
resident stem cells. Moreover, the blood flow might
allow factors secreted by perivascular cells to spread
through the entire organism, activating a systemic
response to tissue damage. The cross talk between
perivascular cells and other cell types within a given
tissue may thus represent a key factor for tissue
regeneration and maintenance (Geevarghese and
Herman, 2014; Rohban et al., 2017).
Distinctive properties of MSCs and pericytes isolated
from different tissues and with different procedures

The possibility to isolate MSCs from almost all
organs, the evidence that the perivascular compartment
of different tissues contains cells with mesodermal
differentiation potential and the evidence that pericytes
and adventitial cells, although distinguishable in situ by
different markers, both express MSCs markers, suggests
the association between MSCs and perivascular cells,
but also indicates a certain level of heterogeneity within
these cells (Crisan et al., 2008, 2012; Corselli et al.,
2012; Zimmerlin et al., 2013).

The use of different techniques for MSCs isolation
from the perivascular compartment may further
contribute to increase the level of heterogeneity among
cultured MSCs populations. Initial protocols were only
based on the enzymatic digestion of a given tissue using
collagenase, which is able per se to dissociate
perivascular cells from the basal membrane of the
vessels. Afterward, it has been shown that perivascular
cells, irrespective of the tissue of origin, can also be
obtained without enzymatic digestion (Tonlorenzi et al.,
2007; Cossu et al., 2015; Pierantozzi et al., 2015, 2016).
This isolation protocol yields cells that present a MSCs
phenotype once expanded in vitro, but also express
pericyte markers. Alternative protocols have been
applied to isolate subpopulations of perivascular cells on
the base of the expression of specific surface markers
such as CD146, CD34 or AP from a bulk population
(Dellavalle et al., 2007; Corselli et al., 2012; Vezzani et
al., 2016). 

It is therefore not surprising that differences can be
observed between cultured perivascular cells and MSCs
obtained by exploiting different isolation procedures
(Bieback et al., 2008; Chen et al., 2015; Günther et al.,
2015; Pierantozzi et al., 2015; Herrmann et al., 2016;
Sacchetti et al., 2016; Vezzani et al., 2016). In a recent
study, the mesodermal differentiation efficiency of
MSCs isolated from adipose tissue through enzymatic
digestion and of isogenic pericytes obtained following
spontaneous outgrowth, was compared (Pierantozzi et
al., 2015). The authors reported that the latter cell
population was more prone to differentiate towards
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osteogenic, adipogenic and myogenic lineage than the
former one. In addition, the properties of pericytes also
appear to depend, at least in part, on the tissue of origin
(Pierantozzi et al., 2016; Sacchetti et al., 2016).
Pericytes prepared from adipose tissue, skeletal and
smooth muscle, showed distinct differentiation abilities
(Pierantozzi et al., 2016). In fact, although pericytes
isolated from all tissues presented a similar phenotype,
only cells from skeletal muscle and adipose tissue were
able to differentiate into adipocytes, chondrocytes and
osteocytes. Even more surprising was the evidence that
only pericytes from skeletal muscle were able to
spontaneously fuse and form skeletal muscle myotubes,
while putative pericytes prepared from smooth muscle
were only able to differentiate into smooth muscle cells.
Similarly, pericytes isolated from cardiac muscle are
committed to cardiomyocyte differentiation, while they
display a null skeletal myogenic potential (Chen et al.,
2015). These findings suggest that cultured pericytes
from different tissues are not equal in terms of
differentiation potential, as they appear to retain a
preferential commitment to differentiate into cells of the
tissue from which they have been isolated (Vezzani et
al., 2016). In agreement with these findings, perivascular
cells from different tissues have been shown to display a
different transcriptomic signature, which parallels the
distinct differentiation abilities observed following both
in vitro differentiation assays and cell transplantation in
mouse models (Sacchetti et al., 2016). It is therefore
evident that, although similar in terms of morphology
and marker expression, when evaluated in light of
multipotent properties, cultured pericytes display clear
differences that reflect the tissue of origin and/or the
isolation procedure. 

In addition, it must be taken into account that
pericyte differentiation abilities, as for the vast majority
of stem cells, are influenced also by aging (Goodell and
Rando, 2015). Indeed, a recent study on AP+ pericytes
isolated from human skeletal muscle of young and
elderly donors showed that ”aged” pericytes exhibit a
reduced myogenic differentiation ability, both in vivo
and in vitro, in favor of a higher adipogenic potential
(Rotini et al., 2018). Moreover, the same authors also
reported that AP+ pericyte abundancy was reduced in
elderly skeletal muscles. Interestingly, the correlation
between aging and decrease of pericyte content has also
been described in mouse kidney (Stefanska et al., 2015).
These findings suggest that the age of the donor
represents an additional variable that can affect the
multipotent properties of pericytes.
MSCs and perivascular cells in clinical applications

The increased interest in stem cells observed in
recent years, based on their potential applications in
regenerative medicine, has resulted in a large number of
clinical trials, where MSCs have been used in cell-based
therapies aimed to treat a variety of diverse diseases.
Currently, only a fraction of these clinical trials have

been fully completed, and the advancements achieved in
using MSCs in this therapeutic field are not as striking as
expected (Bianco, 2014; Cagliani et al., 2017). On these
bases, as described in previous sections, additional
studies aimed at obtaining a better understanding of
MSCs properties, especially in terms of their in vivo
origin and physiological role, have been started. As an
outcome of the clinical studies completed in the past
years using MSCs obtained from either bone marrow,
adipose tissue or umbilical cord, encouraging results
have been obtained for the treatment of liver diseases
(Lee et al., 2017; Tsuchiya et al., 2017), immune
associated diseases (Cagliani et al., 2017), bowel
diseases (Mao et al., 2017), cartilage defects (De Windt
et al., 2017; Paschos and Sennett, 2017), bone defects
(Paduano et al., 2017) and in the enhancement of
hematopoietic stem cell transplantation (Kallekleiv et al.,
2016; Zhao and Liu, 2016; Najar et al., 2018). Currently,
according to ClinicalTrials.gov, 260 clinical studies,
mainly phase I and phase II, are ongoing or recruiting
patients to test the use of MSCs for the treatment of
additional pathological conditions. These studies aim to
evaluate the effectiveness of either autologous or
allogenic MSCs transplantation in the treatment of
several conditions affecting heart, brain, bone/cartilage,
lungs, kidneys, liver, and immune system. MSCs used in
these clinical trials are mainly derived from bone
marrow (40%), umbilical cord (17%) and adipose tissue
(11%) (clinicaltrials.gov). 

The first evidence of in vivo regenerative potential of
cultured pericytes was observed after intra-arterial
delivery of healthy fetal cultured pericytes in α-
sarcoglycan null dystrophic mice (Sampaolesi et al.,
2003). Further studies showed that cultured pericytes
from a variety of fetal and adult tissue are able to
regenerate human myofibers once transplanted into
injured muscles (Crisan et al., 2008). Cultured pericyte
transplantation not only leads to muscle fiber recovery in
terms of structure, but also recovers muscle functionality
(Dellavalle et al., 2007). The effectiveness of
transplantation of skeletal muscle derived pericytes has
been shown also in a myocardial infarction mouse
model. Human CD146+ cells after transplant improved
the contractility of the damaged heart and released
specific trophic factors involved in the overall
regenerative process (Chen et al., 2013, 2015). These
promising results, further confirmed also in a canine pre-
clinical model of muscular dystrophy (Sampaolesi et al.,
2006), led to cultured pericytes transplantation on
pediatric patients affected by Duchenne muscular
dystrophy. Unfortunately, results obtained in the
preclinical models were not reproduced in human
patients (Cossu et al., 2015). The observed lack of
skeletal muscle regeneration in pediatric patients as
compared with preclinical trials on animal models could
be explained by at least three different events: 1) patients
were undergoing anti-inflammatory and immuno-
suppressive therapies that might affect pericyte
extravasation and engraftment; 2) humans, at variance
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with mice or dogs, use also limb girdle and dorsal
muscles to sustain posture and motility, while cell
delivery targeted only upper and lower limbs; 3) the total
cell number injected may not have been sufficient.
Nevertheless, this clinical trial showed promising results
regarding the safety of intra-arterial transplantation of
HLA-matched cultured pericytes, indicating that a cell
therapy based on the transplantation of cultured
pericytes can be considered safe, even though
improvements of the procedure are required (Cossu et
al., 2015; Thomas et al., 2017). 

A major limit of cell based therapies is therefore
represented also by the need to transplant a large number
of cells. The use of MSCs from umbilical cord or
cultured pericytes from skeletal muscle, implies their in
vitro expansion in order to increase the number of cells
obtained from the initial biopsies. Alternatively, the
possibility to isolate an appropriate amount of cells,
avoiding cell culture, has been proved using adipose
tissue as supplier. During the past years, adipose tissue
has been recognized as a conspicuous source of MSCs
due to its easy accessibility through minimally invasive
surgical procedures, such as liposuction (Yoshimura et
al., 2006). The cellular fraction obtained after enzymatic
dissociation of adipose tissue, referred to as stromal
vascular fraction (SVF), contains different cell types
including pre-adipocytes, endothelial cells, leucocytes
and perivascular cells (Zimmerlin et al., 2010). Due to
the presence of perivascular cells, SVF thus represents a
source of MSCs (West et al., 2016). The use of SVF, as
coadjuvant therapy, has been exploited in orthopedic
conditions, wound healing, diabetes, radiotherapy
derived disorders, bowel disease and ulcer (Amos et al.,
2010; James et al., 2012; Shukla et al., 2015; König et
al., 2016; Tawonsawatruk et al., 2016; Zollino et al.,
2016; Esteves and Donadeu, 2017; Klar et al., 2017).

A potential different approach for the use of MSCs
in clinical applications derives from studies on the
ability of these cells to secrete soluble factors that may
stimulate resident cells. Interestingly, it has been shown
that MSCs secrete cytokines, exosomes and other trophic
factors that are known to be involved in the activation of
endogenous mechanisms, from immunomodulation to
post-injury tissue remodeling (including fibrosis)
(Caplan and Correa, 2011; Caplan, 2016). The
immunomodulatory function of MSCs has come under
particular attention in the recent years (Abdi et al., 2008;
Gao et al., 2016). MSCs can regulate both T- and B-cell-
mediated immune response, either through the secretion
of soluble factors or through cell-contact dependent
mechanisms (Jiang et al., 2005; Jarvinen et al., 2008;
Ren et al., 2010; Yagi et al., 2010). Additional studies
reported that MSCs are endowed with macrophage-like
non-professional antigen-presenting cell characteristics
(Pardridge et al., 1989; Shepro and Morel, 1993;
Balabanov et al., 1996; Navarro et al., 2016), a feature
that can prevent the development of autoimmune
activities (Caplan, 2013). Notably, MSCs release
exosomes, and secrete chemokines and other bioactive

molecules, which not only can modulate inflammation,
but also promote and regulate cell proliferation,
apoptosis, matrix remodeling and angiogenesis (Kögler
et al., 2005; Liu and Hwang, 2005; Tögel et al., 2005;
Lai et al., 2010; Morigi et al., 2010; Li et al., 2013; Lin
et al., 2013; Murphy et al., 2013; Shabbir et al., 2015).
This trophic and immunomodulatory role, fundamental
to support homeostasis and tissue regeneration, has led
to the proposal of converting the acronym MSCs from
Mesenchymal Stem Cells into Medicinal Signaling
Cells. This new meaning aims at underlining the
prevalence of the stimulatory effect provided by MSCs
on resident cells, rather than their ability to provide
differentiated cells in cell-based therapies (Caplan, 2010,
2013; Caplan and Correa, 2011; Somoza et al., 2016;
Boregowda et al., 2018).

The ability of MSCs to synthesize and release a
broad spectrum of growth factors, cytokines,
antiapoptotic and angiogenic factors, which can either
affect cells in their proximity or can be released in the
blood stream, suggested that the identification of specific
factors that could be used for clinical purposes may be
obtained from the characterization of MSCs secretome
(Haynesworth et al., 1996; Caplan and Dennis, 2006;
Salgado et al., 2010; Montemurro et al., 2011; Kapur and
Katz, 2013; Yu et al., 2014; Rani et al., 2015; Vizoso et
al., 2017). Interestingly, the secretome profile of MSCs
appears to be tissue-specific. In fact, a study conducted
by Pires and colleagues, proved that the secretome of
human MSCs isolated from bone marrow, adipose tissue,
and umbilical cord have different expression profiles.
This finding suggests a possible way to identify the best
MSCs subtype for the treatment of a specific conditions,
according to the factors secreted (Pires et al., 2016).

MSCs conditioned medium is also enriched in
exosomes that represent a new intercellular
communication system. These nanovescicles are
involved in many different biological processes (Shabbir
et al., 2015), and can be easily isolated from serum,
plasma and cell culture media. Exosomes isolated from
MSCs conditioned medium possess MSCs features, such
as tissue damage repair, inflammatory response
suppression, and immune system modulation (Ludwig
and Giebel, 2012; Lin et al., 2013; Blazquez et al., 2014;
Kordelas et al., 2014; Yu et al., 2014; Kang et al., 2015;
Nakamura et al., 2015; Shabbir et al., 2015; Zhang et al.,
2016). Accordingly, the efficacy of in vivo
administration of MSCs derived exosomes in restoring
pathological conditions has been reported in different
mouse models (Lai et al., 2010; Li et al., 2013). When
injected, exosomes are more stable compared to cells,
and have a lower possibility of rejection after allogenic
administration. Taken together, these findings suggest a
possible novel approach in regenerative medicine based
on the use of MSCs derived exosomes instead of MSCs
(Yu et al., 2014; Gimona et al., 2017). However, the
major limit of the use of MSCs or MSCs derived
exosomes in clinical practice is the manipulative process
that is needed for cell/exosomes isolation. We already
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outlined how enzymatic digestion, or culture expansion
could affect MSCs behavior and marker expression
(Pierantozzi et al., 2015; Guimarães-Camboa et al.,
2017).

In the past decade, subcutaneous adipose tissue
transplant became widely used in aesthetic surgery as a
filler for soft tissue reconstruction (Simonacci et al.,
2017; Spiekman et al., 2017). Beneficial results obtained
with autologous lipofilling in the treatment of scars
suggested the possible application of this technique for
the treatment of other conditions in regenerative
medicine (Coleman, 2006; Oberbauer et al., 2015).
Accordingly, different studies have reported that adipose
tissue injections can improve not only scar regression,
but can also reduce the consequences, like fibrosis,
woody induration, and hypovascularity, which are
frequently observed in skin and subcutaneous tissue after
radiation treatments (Pinski and Roenigk, 1992; Cooper
and Lee, 2009; Phulpin et al., 2009). Currently, it is
accepted that these valuable effects might be ascribed to
the residing perivascular cells.

Recently, different companies started developing
non-enzymatic systems to obtain mechanically
dissociated adipose tissue ready for transplant (Bianchi
et al., 2013; Oberbauer et al., 2015). In fragmented
adipose tissue, the perivascular niche is left in its
physiological state, and pericytes are still wrapped
around the microvasculature in direct contact with
endothelial cells. To date, micro fragmented adipose
tissue autologous transplant has been used with
promising results for the treatment of different
conditions, such as cartilage defect repair, incontinence,
glottiC insufficiency and soft tissue regeneration
(Cestaro et al., 2015; Benzi et al., 2015; Raffaini and
Pisani, 2015; Saibene, 2015; Bosetti et al., 2016). in
vitro studies revealed that microfragmented adipose
tissue secretes a higher amount of exosomes, compared
to the enzymatically digested counterpart (Garcia-
Contreras et al., 2014). This difference outlines once
more how enzymatic dissociation affects the
physiological state of cells, affecting also their
regenerative potential. Since cell-cell contact,
interactions with the extracellular matrix and secretion
of cytokines control the behavior of cells (Watt, 2000), it
can be envisioned that treatments that leave the
perivascular niche unperturbed may result in increased
regenerative abilities of resident pericytes.
Conclusions

Results obtained over the last decades have provided
evidence that MSCs and cells of the perivascular
compartment significantly contribute to tissue
regeneration either by differentiating into specialized
cells, or by recruiting, activating and modulating
resident cells in the complex process of tissue
regeneration. Many studies have addressed the
mechanisms of MSCs regenerative potential, and more
recently have also focused on their trophic activity and

their effects on immune cells. Due to their potential,
MSCs from bone marrow, umbilical cord and adipose
tissue have been widely used for the treatment and
restoration of different pathological conditions.

Based on the knowledge that enzymatic digestion
and in vitro cell culture conditions dramatically affect
cell fate, regenerative medicine perspectives are driving
towards a less manipulative approach, in order to
preserve the original properties of the cell. Accordingly,
paying attention to maintain the perivascular niche of
mesenchymal progenitor/stem cells unperturbed seems
to represent a promising approach to enhance
perivascular cells contribution to regeneration.
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