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Summary. Bone is one of the most adaptable tissues in
the body as it is continuously subjected to load bearing.
In fact, mechanical loading is an important regulator of
bone mass. The skeleton adjusts to load by changing its
mass, shape and microarchitecture, depending on the
magnitude of the strain. Mechanical stimulation is
necessary for the development of the skeleton, whereas
in adults physiological levels of strain help maintain
bone mass by reducing bone resorption. On the other
hand, an excessive level of strain or bone disuse induces
bone loss. Osteocytes are long-lived cells comprising
more than 90% of bone cellularity, which are embedded
in the bone matrix forming a functional syncytium
extending to the bone surface. These cells are considered
to be the main bone cells responsible for translating
mechanical strain into regulatory signals for osteoblasts
and osteoclasts, leading to adapting bone responses to
environmental changes. In this review, we discuss the
complexity and well-orchestrated events that occur in
bone mechanotransduction, focusing on osteocyte
viability as an important biological response in this
respect. Elucidation of the molecular mechanisms of
bone mechanotransduction and the key role of
osteocytes is opening new avenues for the treatment of
bone loss-related diseases.
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Introduction

Bone is one of the most adaptable tissues in the
human body. In fact, the primary function of the skeleton
is to give support to the whole body and to withstand the
biomechanical loads imposed by daily life, thus
preventing damage (Lanyon, 1992). Both cortical and
cancellous bone work together to provide mechanical
support, and can respond and adapt to mechanical
stimuli (Ito et al., 2002; De Souza et al., 2005), but in a
specific manner, related to their different structure and
mechanical properties (Currey, 1984; Martin et al.,
2015). Whereas cortical bone carries a considerable
share of the total load bearing (Martin et al., 1989),
cancellous bone -with the interconnected architecture of
trabeculae- provides structural support by funneling
mechanical stresses towards the stiff cortical layer on the
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bone surface (Huiskes et al., 2000).

Mechanical loading is an important regulator of
bone mass. Hence, the skeleton can adjust to load by
changing its mass, shape and microarchitecture, and this
response differs with the magnitude of the imposed
strain (Turner et al., 1991; Robling et al., 2006; Schulte
et al., 2013). The concept that the skeleton adapts its
structure to mechanical loads that create bone stresses
was initially proposed by Julius Wolff and enshrined in
Wolff’s Law (Wolff, 1892). In the late 1980s, this idea
was extended by developing a conceptual model -the
mechanostat hypothesis- to explain bone adaptation to
mechanical inputs (Frost, 1987). This is based on the
piezoelectric properties of bone and proposes several
mechanisms through which bone strength can be
increased upon demand. This hypothesis has been a
useful tool for understanding how the mechanical
environment may regulate bone modeling and
remodeling, and the manner whereby osteoporotic bone
can respond to mechanical stimulation (Frost, 1987).

Mechanical stimulation appears to be necessary for
the development of the skeleton (Roddy et al., 2011;
Sharir et al., 2011). It has been described that limbs may
decrease up to 50-70% of their normal bone mass in the
absence of mechanical usage during human bone growth
(Ralis et al., 1976; Rodriguez et al., 1988). In this context,
studies in both humans and animals have shown that bone
reshaping in response to mechanical loading occurs
during skeletal growth (Kannus et al., 1995; Turner et al.,
1995; Bass et al., 1998); in the adult skeleton, a
physiological level of strain reduces bone resorption, thus
contributing to bone mass maintenance (Flieger et al.,
1998; Rubin et al., 2001). On the other hand, an excessive
level of strain or bone disuse induces bone resorption and
bone loss (Bikle et al., 2003; Aguirre et al., 2006).

Nevertheless, the molecular basis of bone
mechanotransduction is not completely understood, and
many questions still remain unanswered. In this review,
we address the complexity and well-orchestrated events
that occur in bone mechanotransduction, resulting in
adaptive changes to maintain bone mass. We will start
by dealing with osteocytes, the most abundant cell type
in bone, and those principally responsible for sensing
mechanical strain. We will then focus on the main
osteocyte mechanoreceptors as well as different
mechanisms of signaling resulting in increased osteocyte
viability, a key factor for bone mass maintenance. As
bone mechanical stimulation leads to activation of bone
anabolic pathways, their characterization might provide
clues to identify potential targets to treat bone loss-
related diseases.

Osteocytes

Osteocytes are terminally differentiated osteoblasts
that become embedded into the mineralized bone matrix
during the process of bone deposition. Osteocytes
constitute the most abundant cell type in bone,
comprising more than 90% of all bone cells in mature

bone (Parfitt, 1977). The physical environment in which
osteocytes are located -buried in the mineralized matrix-
is quite different from the bone surface, where
osteoblasts, osteoclasts and lining cells localize, or from
the bone marrow containing osteoblast and osteoclast
progenitors (Bonewald, 2011). The fact that osteocytes
are completely surrounded by mineralized bone would in
theory hamper cell communication. However, each
osteocyte is fitted in a cavity (“lacuna”) but contains 40-
60 dendritic processes emerging from the cell body in all
directions and traveling inside narrow (260 nm of
diameter) canals (canaliculi) (Knothe et al., 2004).
Neighboring osteocytes contact with each other by these
cell processes that transmit molecular signals through
gap junction channels, permitting a rapid cell-cell
communication. This lacunae-canalicular system thus
provides a complex and extensive network of
communication that links not only osteocytes with each
other but also with other cells on the bone surface and
the bone marrow (Kamioka et al., 2004). Thus,
osteocytes are unique in being long-lived and abundant
bone cells, which form a functional syncytium from the
mineralized bone matrix to the bone surface and the
bone marrow, and are capable of sensing variations in
mechanical strain. All these features confer osteocytes
the capacity to orchestrate osteoblast and osteoclast
function, leading to adaptive responses of bone to
environmental changes.

Role of osteocytes in bone mechanotransduction

Currently, both theoretical considerations and
experimental evidence support the osteocyte role as the
primary mechanosensitive cell in bone (Lanyon, 1993;
Klein-Nulend et al., 1995; Mullender and Huiskes, 1997;
You et al., 2008). Of note in this respect, transgenic mice
with inducible and specific ablation of osteocytes but
completely functional osteoblasts and osteoclasts show
resistance to disuse-related bone loss in contrast to their
wild controls, indicating that an intact and functional
osteocyte network is necessary to sense and respond to
these mechanical loading changes (Tatsumi et al., 2007).
The question thus is how osteocytes are able to sense
mechanical changes in their physical environment. The
lacuno-canalicular system in which osteocytes are
inserted is filled with bone interstitial fluid (Knothe et
al., 2004; Bonewald, 2011). It has been proposed that
upon bone loading, such fluid is pushed back and forth
through the extracellular space. This causes deformation
of both osteocytes within the lacunae and also osteocyte
processes within the canaliculi, modifying the normally
tight space between the cell membrane and the
canalicular wall (Cowin et al., 1991). As a consequence,
fluid velocity can increase from that supposedly
corresponding to physiologic loads, in the range of 8-30
dynes/cm?; the magnitude of this fluid force is
proportional to the body load (Wang et al., 2005).

In the early 1990s, a model of strain amplification in
osteocytes was proposed, including their sensitivity to
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relatively small fluid shear stress as a consequence of
fluid drag by the proteoglycan matrix on the osteocyte
membrane (Weinbaum et al., 1994). This model has
recently been further extended by emphasizing the
importance of tethering the osteocyte processes to the
canalicular wall via integrins and the glycocalix (Han et
al., 2004). The fluid flow movement through the
canalicular space would produce deformation of the
latter tethering complex by imposing a hoop strain on
the central actin bundles inside the osteocyte cell
process. This has been estimated to represent an increase
in osteocyte membrane strain of 10-100-fold over
physiological values (Han et al., 2004).

The primary cilium as a mechanosensor organelle

In the last few years, the putative role of osteocyte
primary cilium in bone mechanotransduction has
emerged. This microtubule structure is a single and non-
motile organelle protruding from the cell surface of
many mammalian cell types, including kidney and liver
cells. Of interest, it has been shown that fluid flow-
induced bending of the renal epithelial cell prlmary
cilium leads to a rapid increase of intracellular Ca**
(Praetorius and Spring, 2001, 2003). In addition, this
mechanical response appears to be mediated by the
polycystin (PC) 1/2 receptor-ion channel complex
consisting of PC1, a large membrane protein, and PC2, a
cationic channel (Nauli et al., 2003). Recently, Xiao et
al. found that PC1 and PC2 localize to the primary
cilium in osteoblasts and osteocytes (Xiao et al., 2006).
Heterozygous mutant Pkdl mice with a missense
mutation in the PClgene have a decrease in bone
mineral density, trabecular bone volume and cortical
thickness. Moreover, both MC3T3-E1 osteoblasts and
MLO-Y4 osteocytes have been shown to respond to
fluid flow with a cilium-dependent stimulation of both
cyclooxygenase (COX) 2 and prostaglandinE2 (PGE2),
a well characterized system in bone mechanotrans-
duction (Malone et al., 2007). Of interest, prevention of
cilium formation by knocking down the polaris gene -
which is necessary for cilium development- in both cell
types did not interfere with Ca®* influx in response to
fluid flow, suggesting independence of primary cilium
(Malone et al., 2007). More recently, the same team of
investigators using fluorescence resonance energy
transfer (FRET) technology has been able to measure
Ca?* influx in the primary cilium of MLO-Y4
osteocytes. They showed that at least some mechanical
responses in these cells appear to be dependent on Ca%*
entry through the transient receptor potential vanilloid 4
(TRV4) in a distinct microdomain on the surface of the
primary cilium (Lee et al., 2015). These aggregated
findings suggest that fluid flow stimulation in osteocytes
can lead to a primary cﬂlum mdependent Ca?* influx,
but also to localized Ca>* peaks in the cilium itself.

Taken together, these studies support the potential
role of the osteocyte primary cilium in bone
mechanotransduction. However, further studies are

necessary to unravel the underlying molecular
mechanisms whereby this osteocyte structure may act as
a true mechanosensor in these cells.

Bone mechanoreceptors

Once the mechanical stimulus or its lack thereof is
sensed by the osteocyte, a cascade of signaling events
takes place in order to generate biological responses
eventually leading to bone gain or bone loss,
respectively. The molecular entities that initiate the
process of transducing a physical input into a
biochemical response are known as mechanoreceptors.
They can rapidly (in seconds) trigger intracellular
signals with two main functions: activation of
transcriptional mechanisms affecting bone modeling/
remodeling, and propagation of mechanical stimuli to
other osteocytes through paracrine effectors such as NO
and PGE2 secretion. Currently, mechanoreceptors of
three categories have been described: mechanosensitive
ion channels; cell adhesion/cytoskeletal signaling
molecules; and certain G protein-coupled receptors
(GPCRs).

lon channels

Ion channels are multimeric pore-forming proteins
located in the plasma membrane. They have the ability
to open and close in response to different chemical or
mechanical signals, such as changes in cell membrane
voltage [voltage-sensitive channels (VSCs)], bio-
chemical ligands and physical stimuli [mechanosensitive
channels (MSCs)]. Fluid forces are thought to activate
MSCs in osteocytes (Wang et al., 2007), and this
activation might secondarily induce calcium-dependent
VSCs (Duncan and Turner, 1995). Moreover, pre-
treatment of bone cells with gadolinium chloride, a
blocker of MSCs, before mechanical stimulation,
inhibits loading-related release of PGE2 and NO
(Rawlinson et al., 1996). Furthermore, blocking VSCs
by using the L-type VSC antagonists verapamil and
nifedipine has been shown to suppress bone
mechanotransduction (Li et al., 2002).

Cell adhesion, focal adhesion and cytoskeleton
molecules

Integrins are transmembrane proteins with a dual
role: a structural function, in which they are linked to the
cytoskeleton network, and as signal transducers,
whereby they are associated with adaptor proteins such
as talin, paxillin, and focal adhesion kinase (FAK) (focal
adhesion proteins). Both functions of integrins seem to
be implicated in the mechanosensory apparatus of
osteocytes. Regarding their structural role, some
evidence supports the notion that mechanical stimulation
can be sensed by integrins, which transduce the
mechanical input to the nucleus via the actin
cytoskeleton, giving rise to nuclear realignment and
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chromatin remodeling (Maniotis et al., 1997). There is
also growing evidence for a signal transduction role of
an integrin-focal adhesion complex in bone mechano-
biology (Pommerenke et al., 2002). Therefore, bone
regeneration around a mechanically loaded implant is
suppressed in FAK-deficient mice (Leucht et al., 2007).
In addition, another focal adhesion signaling protein
with an important role in bone mechanotransduction is
proline-rich tyrosine kinase 2 (PYK?2). Like unloading
itself, PYK2 activation induces osteocyte apoptosis
(Aguirre et al., 2006; Plotkin et al., 2007), while
mechanical loading suppresses this activation (Plotkin et
al., 2005). Of note, PYK?2 knockout mice have high bone
mass resulting from increased bone formation
(Buckbinder et al., 2007) and decreased bone resorption
(Gil-Henn et al., 2007).

GPCRs

GPCRs are seven-transmembrane domain receptors
coupled to trimeric guanine nucleotide-binding proteins
(G-proteins), and represent the largest family of cell
surface receptors. They can be activated by a variety of
ligands triggering several signal transduction pathways.
Recent studies using biophysical, biological and
biochemical methods suggest that certain GPCRs,
including bradykinin receptor in endothelial cells
(Chachisvilis et al., 2006), angiotensin II type 1 receptor
in cardiomyocytes and osteoblasts (Zou et al., 2004;
Bandow et al., 2007), formyl peptide receptor in
neutrophils (Makino et al., 2006) and the parathyroid
hormone/parathyroid hormone related protein type 1
receptor (PTHIR) in osteoblasts (Zhang et al., 2009) are
all able to sense mechanical perturbation of the plasma
membrane leading to ligand-independent conformational
transitions. In this regard, our group has recently
demonstrated that PTHIR is an important component of
the mechanical signal transduction machinery in MLO-
Y4 osteocytic cells (Maycas et al., 2015a). In these cells,
a ligand-independent PTHIR activation, related to an
increased Ca;~* influx, was found to occur immediately
after mechanical stimulation by fluid flow (Maycas et
al., 2015a). Moreover, this mechanical stimulation
induced an increase in PTHIR protein in the plasma
membrane of MLO-Y4 cells (Maycas et al., 2015b).
Interestingly, it was found that the endogenous PTHIR
ligand PTHrP was reduced in rodent bone by
microgravity, and that PTHrP can protect mouse
trabecular osteoblasts from microgravity-induced
apoptosis (Torday, 2003; Camirand et al., 2016). Also
recently, exogenous PTHrP was shown to exert an
additive anabolic effect with mechanical loading on
diabetic mouse bone (Maycas et al., 2016).

Other molecules
Other molecules have also been postulated to act as

mechanoreceptor candidates in osteocytes. Thus, the
essential role of membrane-associated estrogen receptors

for the transduction of mechanical forces into cell
survival signals in a ligand-independent fashion has been
reported in osteoblasts and osteocytes (Aguirre et al.,
2007). In addition, the vascular endothelial growth factor
(VEGF) receptor 2 (VEGFR2) can be mechanically
activated in a VEGF-independent manner in endothelial
cells (Jin et al., 2003). We recently demonstrated that a
similar VEGFR2 activation -dependent on the
transmembrane protein caveolin-1- occurs in mechani-
cally stimulated MLO-Y4 osteocytes (Castro et al.,
2015).

Other well known molecules that have been
proposed as putative mechanotransductors are connexins
(Cx), a family of transmembrane proteins which cluster
together in groups of 6 forming hemichannels; a
combination of 2 hemichannels from adjacent cells
forms a gap junction channel, which is essential for
intercellular communication. Due to the role of
osteocytes as primary mechanosensor cells in bone and
their extensive communication network, there has long
been proposed an important role of Cxs in the response
of these cells to mechanical stimulation (Plotkin and
Bello, 2013; Lloyd et al., 2014). Several Cxs, including
Cx43, Cx45, Cx46 and Cx37, have been characterized in
osteoblasts and osteocytes (Stains et al., 2005; Pacheco-
Costa et al., 2014); although Cx43 has been the best
studied so far in osteocytes (Schirrmacher et al., 1992;
Civitelli et al., 1993; Yellowley et al., 2000). Fluid flow-
induced stress has been shown to trigger the opening of
Cx43 hemichannels associated with the anti-apoptotic
response in MLO-Y4 osteocytes (Cheng et al., 2001a).
Furthermore, Cx43 interacts with integrins (Batra et al.,
2012), and also seems to be involved in the ATP and
PGE?2 release occurring after mechanical stimulation (as
discussed below) (Cheng et al., 2001b; Genetos et al.,
2007). Despite this in vitro evidence pointing to a role of
Cx43 in bone mechanotransduction, recent in vivo
studies have shown unexpected results in this respect.
Thus, mice lacking Cx43 in osteoblastic or osteocytic
cells surprisingly exhibited an increased bone anabolic
response to loading (Zhang et al., 2011; Bivi et al.,
2013). These mice also showed a blunted catabolic
response to unloading by immobilization. Therefore,
current data suggest that the role of Cx43 in bone
mechanotransduction might be complex and deserves
further studies (Lloyd et al., 2012).

Recently, the Notch pathway has also received some
attention in this regard. Notch receptors 1-4 are a family
of single-pass transmembrane proteins, which play a
critical role in skeletal development and homeostasis.
Interestingly, Notch activation in osteoblasts leads to
osteopenia while its activation in osteocytes shows a
completely different phenotype with an increase in bone
mass (Canalis et al., 2013a). However, the underlying
mechanisms leading to these bone alterations are still
unknown. Fluid flow shear stress has been shown to
activate notch signaling in MLO-Y4 osteocytes,
supporting the notion that this pathway in these cells
may play a role in skeletal adaptation to mechanical
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inputs (Canalis et al., 2013b). Further work is needed,
though, to validate this hypothesis.

Mechanisms of signal propagation in osteocytes

Following activation of mechanoreceptors in
osteocytes, a series of secondary biochemical signaling
events takes place inducing adaptive changes in gene
expression, protein metabolism and secretion, and cell
structure reorganization, eventually affecting cell
proliferation and viability that contribute to maintain
bone mass. As all of these actions are often mediated
through multiple, overlapping and cross-talking
signaling pathways, a challenge arises at elucidating
those pathways that are critical in the anabolic response
to mechanical loads. The most studied pathways in this
regard include an increase of intracellular Cai2+ and ATP,
PGE2 release, NO production and Wnt pathway
activation.

Changes in Caf* and ATP release

The increase of both CaiZJr and ATP is among the
earliest responses, taking place within seconds, to
mechanical stimulation of osteocytes (and osteoblasts)
(Hung et al., 1996; Genetos et al., 2005, 2007).
Inhibition of voltage-sensitive calcium channels has
been shown to avoid ATP release in response to fluid
flow shear stress in MC3T3-El osteoblasts, indicating
that Cai2+ influx is needed for ATP release in this
scenario (Genetos et al., 2005). Furthermore, in vivo
studies have confirmed the importance of both Cainr and
ATP in bone mechanotransduction. Rats treated with L-
type VSC antagonists before mechanical stimulation
decreased load-induced bone formation by 50-60% (Li
et al., 2002), whereas transgenic mice carrying a loss-of-
function mutation of an ionotropic ATP receptor
similarly show a reduced bone anabolic response to
mechanical loading (Li et al., 2005).

COX2-PGE2 pathway

Another pathway likely involved in bone
mechanotransduction is the COX2-PGE2 pathway
(Ajubi et al., 1999). Both in vivo and in vitro studies
point to the important role of COX-2 (the inducible
isoform of COX)-PGE2 system in the anabolic response
to loading. In vitro, in MLO-Y4 cells, fluid flow shear
stress or stretching rapidly induces PGE2 release
through a mechanism involving Cx43 hemichannels
(Cherian et al., 2005) and/or the purogenic P2X7 protein
complex (Li et al., 2005). The released PGE2 thereafter
binds to PGE2 receptors (EP1-4) that signal through
cAMP/protein kinase (PK)A, phosphatidyli-nositol-4.,5-
bisphosphate 3-kinase (PI3K)/Akt and glycogen
synthase kinase 3 (GSK-3[3)/B-catenin pathways, which
likely crosstalk to block osteocyte apoptosis (Kitase et
al., 2010). Furthermore, pre-treatment of MLO-Y4 cells
with indomethacin, a potent inhibitor of PGE2 synthesis,

prevents the pro-survival effect of fluid flow shear stress
(Kitase et al., 2010). In vivo studies also support the
crucial role of the COX-PGE2 pathway in
mechanotransduction. Hence, rats with pharmacologic
inhibition of either COX-1 and -2 by indomethacin
administration, or of COX-1 alone via NS-398 (N-[2-
(cyclohexyloxy)-4-nitrophenyl]metha-nesulfonamide)
administration showed a decreased osteogenic response
to mechanical loading (Chow and Chambers, 1994;
Forwood, 1996). Moreover, an immediate release of
PGE?2 in the proximal tibia occurs in humans after
jumping (Thorsen et al., 1996).

NO pathway

NO synthase (NOS) catalyzes NO generation from
L-arginine. NO is a short-lived free radical that inhibits
bone resorption but promotes bone formation in vivo,
and is generated within seconds of mechanical strain in
both osteoblasts and osteocytes in vitro (Tan et al.,
2008). Mechanically induced NO overproduction lowers
the receptor activator of nuclear factor kappa-B ligand
(RANKL), a major promoter of osteoclast formation and
survival (Rahnert et al., 2008). In addition, mice lacking
the inducible form of NOS (iNOS) are unable to
generate an osteogenic response to mechanical loading
(Watanuki et al., 2002).

Whnt/B-catenin pathway

The canonical Wnt/p-catenin plays an important role
in osteoblast differentiation, proliferation and apoptosis
(Glass and Karsenty, 2007). The bulk of in vivo and in
vitro studies have consistently shown that mechanical
stimulation activates this pathway (Robinson et al.,
2006; Santos et al., 2010) . This pathway comprises Wnt
glycoproteins as ligands and a receptor complex of
frizzled receptors (FZD) and low-density lipoprotein
receptor-related protein 5 or 6 (LRPS5 or LRP6) co-
receptors. Upon mechanical activation, this complex
leads to intracellular stabilization and cell relocalization
of B-catenin in both the cell membrane and nucleus
(Castro et al., 2015; Maycas et al., 2015a), which then
stimulates transcription of osteogenic genes in the latter
compartment. Deletion of LRP5 in mice prevents
mechanical-induced bone formation (Sawakami et al.,
2006). On the other hand, endogenous inhibitors of the
canonical Wnt pathway such as sclerostin (the protein
product of the SOST gene, specific for osteocytes) have
been shown to be down-regulated by mechanical loading
(Robling et al., 2008). Furthermore, there seems to be a
crosstalk between the Wnt/f-catenin and PGE2
pathways upon their activation in response to
mechanical loading to preserve osteocyte viability (as
discussed below) (Kitase et al., 2010).

Other pathways

In vitro studies show that extracellular signal-
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regulated kinase (ERK) phosphorylation and subsequent
nuclear translocation occur shortly (<10 min) after
mechanical stimulation of osteocytes (Plotkin et al.,
2005; Gortazar et al., 2013; Castro et al., 2015; Maycas
et al., 2015a,b). Of interest, recent studies indicate that
activation and nuclear translocation of ERK in this
scenario occur through a signalsome that includes
integrin signaling, Src kinase activity and intact caveolae
(Plotkin et al., 2005). In fact, caveolin-1, the structural
component of caveolae, interacts with ERK and also
with integrin f1 in MLO-Y4 osteocytes. Both ERK
activation and osteocyte survival induced by mechanical
stimulation are abolished by P-cyclodextrin, a
cholesterol chelator that disrupts membrane caveolae
micro-domains. Thus, current evidence points to the
importance of caveolin-1 in the pro-survival response to
mechanical loads in osteocytes (Plotkin et al., 2005;
Gortazar et al., 2013).

Osteocyte survival as a major response to
mechanical stimulation

Preserving osteocyte viability is a paramount feature
for maintaining skeletal integrity. It has been
demonstrated that different drugs with anti-fracture
efficacy, namely bisphosphonates, PTH (by intermittent
administration) and estrogens, all prevent osteocyte
apoptosis (Tomkinson et al., 1998; Plotkin et al., 1999;
Weinstein et al., 2010). On the other hand, an excess of
glucocorticoids and sex steroids deficiency -conditions
increasing bone fragility- are both associated with
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decreased osteocyte survival (Weinstein et al., 2010;
Jilka et al., 2013). Reduced mechanical loading or bone
disuse in vivo increases the number of osteocytes
undergoing apoptosis (Aguirre et al., 2006). However, in
this situation, inhibition of osteocyte apoptosis does not
appear to be sufficient to prevent bone loss (Plotkin et
al., 2015). In contrast, mechanical stimulation of
osteocytes in vitro inhibits apoptosis induced by low-
serum conditions or pro-apoptotic agents (Plotkin et al.,
2007; Kitase et al., 2010; Gortazar et al., 2013; Maycas
et al., 2015a,b). The biochemical signals whereby
mechanical loading helps maintain osteocyte viability
are only starting to be characterized. The role of -
catenin signaling in the prevention of apoptosis is well
established in several cell systems, and also in
osteocytes upon mechanical stimulation (Gortazar et al.,
2013; Castro et al., 2015; Maycas et al., 2015a,b). In this
regard, our recent study has proposed the existence of a
crosstalk between caveolin-1/ERK and Wnt/3-catenin
pathways related to cell survival in mechanically
stimulated MLO-Y4 cells (Gortazar et al., 2013).
Moreover, the recognition of ERK and f-catenin
signaling pathways as early mediators of osteocyte
survival has helped identify other upstream components
of the mechanotransduction machinery implicated in the
preservation of osteocyte viability. In this respect,
mechanical activation of several membrane receptors,
namely estrogen receptors, the PTHIR and VEGFR?2, as
well as PGE2, all appear to contribute to osteocyte
protection by promoting accumulation of ERK and [3-
catenin (Aguirre et al., 2007; Gortazar et al., 2013;

Fig. 1. Mechanisms of bone mechano-
transduction. This cell process
osteocytes converts mechanical stimuli into
— biochemical activities leading to
physiological responses. In this
scheme, we show currently characte-
rized biological components of
mechanotransduction in osteocytes.
These cells can be stimulated by
relatively small fluid shear stresses
caused by fluid drag affecting
proteoglycan matrix on the osteocyte
surface and on its cell processes. This
deforms the cell membrane, which
Biochemical signals then activates several mechano-
receptors: ion channels, integrins and
GPCRs. Other receptors such as
VEGFR2, estrogen receptors, and
Notch receptors, as well as Cxs might
also play a role in this respect.
Activation of mechanoreceptors
propagates the response through
various secondary signaling events
— including increase in Cai2+and ATP,
activation of COX-PGE2, as well as
NO, Wnt/B-catenin and MAPK/ERK
pathways, which eventually affect
transcription of target genes leading to
— bone anabolic responses.

other: —
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|
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Castro et al., 2015; Maycas et al., 2015a,b).
Concluding comments and perspectives

In this review, we have dealt with current
perspectives on the cellular and molecular elements
involved in bone mechanotransduction (Fig. 1). This is a
continuously evolving area with the aim of better
understanding the molecular mechanisms involved in
this process. The complexity of bone mechanotrans-
duction is related to the special characteristics of the
osteocyte, as a cell buried in the mineralized bone matrix
which has developed a unique sensitivity to translate
mechanical stimuli into autocrine and paracrine cell
responses. Mechanical loading leads to increased bone
mass, decreased bone loss and improved bone strength.
Further studies ongoing in several laboratories are
expected to provide a better characterization of the
underlying mechanisms of bone mechanotransduction in
the near future. This characterization may prove useful
for designing new paradigms for therapeutic intervention
in bone diseases.
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