
Summary. Single-layered intestinal epithelia play key
roles in the maintenance of gut homeostasis and barrier
integrity. Various types of epithelial cell death, including
apoptosis, necrosis, and necroptosis, have been detected
in ischemic and hypoxic stress conditions, thus resulting
in bacterial translocation and gut-derived septic
complications. Cytoprotective strategies, such as enteral
glucose uptake, rescue intestinal epithelium from cell
death after ischemic and hypoxic injury. Although
glucose metabolism and energy production are generally
considered to be the key factors in cytoprotection, the
precise modes and sites of action have not been clarified.
Our recent studies have demonstrated that energy
restoration promotes crypt hyperplasia but does not
prevent epithelial cell death under ischemic stress. On
the other hand, glycolytic pyruvate prevents epithelial
cells from undergoing apoptosis and necroptosis by
scavenging free radicals in an ATP-independent manner.
Distinct gut protective mechanisms involving ATP,
pyruvate, glucose metabolic enzymes, and sodium-
dependent glucose transporter activation are discussed
here. Overall, glucose-mediated cytoprotection may be a
universal mechanism that has evolved in epithelial cells
for the maintenance of intestinal homeostasis. Enteral
glucose supplementation is beneficial as a perioperative
supportive therapy for the protection of gut barrier
integrity.
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Histophysiology of intestinal epithelium

Intestinal epithelial cells undergo rapid turnover in a
state of dynamic equilibrium and play a crucial role in
maintaining homeostasis. Stem cells in the crypt divide
and migrate upward and become differentiated epithelial
cells with digestive, absorptive, and secretive functions.
The fully differentiated cells develop a long brush border
with extensive expression of membranous enzymes and
transporters, which facilitate nutrient uptake. On the
villus tip or surface extrusion zone, the epithelial cells
are shed and undergo apoptosis (Yen and Wright, 2006;
Yu et al., 2012). Although surface cell apoptosis occurs,
an intact epithelial barrier is sustained under
physiological conditions (Madara, 1990; Guan et al.,
2011). 

Because they serve as a portal to the external
environment, epithelial cells are often exposed to
noxious agents and infectious pathogens. High levels of
commensal bacteria are also present in the gut lumen. A
favorable symbiotic relationship between the host and
microbes is dependent on the integrity of the single-
layered epithelial barrier (Ley et al., 2006; Yu et al.,
2012). With a dynamic turnover rate of 5-7 days,
cytoprotective mechanisms evolved by epithelial cells
represent the basis of gut homeostasis. A number of
cytoprotective mechanisms have been proposed,
including nutrient uptake and transcriptional adaptation. 
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Glucose transport and metabolism in intestinal
epithelial cells 

Glucose transporters are ubiquitously expressed on
all cell types in the body, including three subtypes of
sodium-dependent glucose transporters (SGLTs) and
fourteen members of glucose transporters (GLUTs). In
the small intestinal epithelial cells (enterocytes), the
major transporter expressed on the apical membrane for
active glucose uptake is SGLT1, whereas GLUT2 is
responsible for the basolateral diffusion of glucose into
the bloodstream (Ferraris and Diamond, 1997; Daniel
and Zietek, 2015). Glucose binding to SGLT1 activates
downstream signaling for insertion of GLUT2 into the
apical membrane for facilitative diffusion of enteral
glucose (Kellett and Helliwell, 2000; Mace et al., 2007).
Aside from glucose transport, enterocytes also express
apical GLUT5 for uptake of dietary fructose (Ferraris
and Diamond, 1997). On the other hand, large intestinal
epithelial cells (colonocytes) do not normally express
SGLT1 or GLUT2 but are equipped with GLUT5 and
GLUT6 (Godoy et al., 2006).

The metabolic pathways in enterocytes and
colonocytes are different. Preferential energy sources for
enterocytes include glucose and glutamine; the former
predominantly undergoes anaerobic glycolysis, and the
latter predominantly undergoes mitochondrial respiration
for energy production (Kight and Fleming, 1995;
Fleming et al., 1997). Owing to the presence of
anaerobic bacteria in the large intestine, short chain fatty
acids (e.g., butyrate) fermented from dietary fiber after
diffusion through the lipid bilayer membrane are the
major energy source for colonocytes (Roediger, 1982;
Wong et al., 2006). The utilization of butyrate for
mitochondrial oxidative phosphorylation in colonocytes
generates more than half of the energy output, even in
the presence of glucose (Roediger, 1982; Wong et al.,
2006). 

Intestinal absorption of glucose is remarkably
adaptive, and the uptake level changes according to diet,
age, energetics, and stress. After ingestion of dietary
carbohydrate, glucose transporter expression on
enterocytes is observed within minutes to several hours
(Diamond and Karasov, 1987; Ferraris and Diamond,
1992). In contrast, total parenteral nutrition or fasting for
a prolonged period may lead to decreased epithelial
glucose uptake in the small intestine (Kotler et al.,
1980). Hormones that regulate mucosal growth and
transporter activity and consequently increase glucose
uptake include gastrin, neurotensin, glucagon-like
peptides, and epidermal growth factor (Ferraris and
Diamond, 1997). Recent evidence has shown that
luminal contents, such as the presence of glucose and
non-metabolized sugars (such as artificial sweeteners),
activate taste receptors and result in upregulation of the
expression of SGLT1 (Moran et al., 2010; Stearns et al.,
2010). In addition, bacterial lipopolysaccharide binding
also stimulates translocation of intracellular vesicular
SGLT1 to the apical membrane (Yu et al., 2006).

Cells that undergo hypoxic stress respond by
adapting to increased glucose uptake. Previous studies
have demonstrated transcriptional upregulation of
GLUT-1 by binding of hypoxia-inducible factor (HIF)-1
to a hypoxia-responsive element in the promoter region
of the glucose transporter (Ouiddir et al., 1999; Hayashi
et al., 2004). A recent study has shown an increase in
GLUT1 and GLUT4 transcript and protein levels of
colonic epithelial cell lines after hypoxic challenge
(Huang et al., 2013). Overall, the fluctuations of glucose
transporter expression may reflect the fundamental
metabolic requirements for cell survival. 
Epithelial cell death and barrier damage in response
to stress

Owing to the anatomical structure and vascular
distribution, surface epithelia are the most fragile cell
types in the gut tissues after exposure to ischemic and
pathogenic stress. Surface cell death and mucosal
ulceration are repaired by crypt hyperplasia through
epithelial restitution and wound healing. Various types of
epithelial cell death, including apoptosis, necrosis, and
necroptosis, have been documented in the gut. Apoptosis
and necroptosis are programmed cell death processes
that are regulated by a cascade of signaling molecules.
Apoptosis is characterized by caspase activation and
DNA fragmentation. Necroptosis is executed by
receptor-interacting protein (RIP)1/3 signaling and
mitochondrial generation of reactive oxygen species
(ROS), thus eventually resulting in necrotic features of
the cells. In contrast, necrosis is an uncontrolled,
unregulated form of cell death. Detailed information on
the types of cell death, has been described in other
articles (Vandenabeele et al., 2010; Gunther et al., 2013;
Linkermann and Green, 2014; Huang and Yu, 2015). 

Excessive epithelial cell death and gut barrier
dysfunction have been observed after exposure to
metabolic, inflammatory, oxidative, and heat stress.
Metabolic stress in the gut is primarily caused by
depletion of oxygen and nutrients, such as during
mesenteric ischemia, trauma, hemorrhagic shock,
necrotizing enterocolitis, and major abdominal and
vascular surgery (Sreenarasimhaiah, 2005; Jilling et al.,
2006; Zou et al., 2009; Yu, 2010; McElroy et al., 2013).
An increase in apoptosis, necroptosis, and necrosis in gut
epithelia has been observed in animal models of
mesenteric ischemia/reperfusion (I/R) (Azuara et al.,
2005; Chang et al., 2005; Huang et al., 2011, 2016).
Mucosal ulceration and epithelial cell death (i.e.,
apoptosis, necroptosis, and necrosis) have been found in
patients and animal models with inflammatory bowel
disease (Heller et al., 2008; Qiu et al., 2011; Welz et al.,
2011; Su et al., 2013; Pierdomenico et al., 2014).
Various factors, such as inflammatory hypoxia, free
radicals, immune factors (e.g., natural killer cells,
cytotoxic T cells, and tumor necrosis factor α), or
thermal stress as a physiological equivalent to fever, are
all possible causes of induction of cell apoptosis and
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necrosis (Kinoshita et al., 2002; Merger et al., 2002; Sun
et al., 2002; Haynes et al., 2009; Sakiyama et al., 2009;
Kallweit et al., 2012). With such a wide range of
potential death stimuli, efficient cytoprotective
mechanisms are crucial for the maintenance of epithelial
survival and gut barrier integrity. 
Rescue strategies against epithelial cell death by
glucose

Protection against I/R injury by supplementation of
glucose has been documented in various organs,
including the kidney, heart and intestine (Kehrer et al.,
1990; Ramasamy et al., 2001; Kozar et al., 2002).
Glucose-mediated cytoprotection in gut epithelium has
been reported after exposure to ischemic and
inflammatory stress (Kozar et al., 2002; Huang et al.,
2011, 2016). Enteral glucose not only prevents epithelial
apoptosis and necroptosis but also restores crypt
proliferative functions after ischemic insult (Huang et
al., 2011, 2016). The attenuation of ischemic injury by

glucose supplementation had previously been mistaken
for an absence of stress stimuli. However, this hypot-
hesis has recently been overturned by novel findings
demonstrating that ischemia-induced cell death remains
present despite replenishment of ATP (Huang et al.,
2016). Here, the distinct cytoprotective roles of ATP,
pyruvate, glucose metabolic enzymes, SGLT1-mediated
signaling pathways, and the BAD/glucokinase axis will
be highlighted (Fig. 1). 
Roles of ATP

An energy decrease has been assumed to be the
major cause of epithelial cell death under ischemia. In
support of this hypothesis, numerous studies have shown
that intestinal I/R-induced histopathological injury and
barrier defects are alleviated by supplementation with
enteral nutrients, such as glucose and glutamine (Ahdieh
et al., 1998; Blikslager et al., 1999; Kozar et al., 2002;
Sukhotnik et al., 2007). The beneficial effects of glucose
and glutamine have been attributed to energy
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Fig. 1. Schema of glucose-mediated
cytoprotection in intestinal epithelial
cells under ischemic and hypoxic
stress. Enterocytes constitutively
express sodium-dependent glucose
transporter 1 (SGLT1) on the apical
membrane and glucose transporter 2
(GLUT2) on the basolateral
membrane. After SGLT1 glucose
binding, apical trafficking of GLUT2
(*) facilitates diffusion of enteral
glucose. Glucose absorbed by
enterocytes is either transported into
the bloodstream to supply other
viscera or undergoes anaerobic
glycolytic metabolism and mito-
chondrial oxidative phosphorylation
(OxPhos). One glucose is converted
to two phosphoenolpyruvate (PEP) by
the metabolic enzymes hexokinase
(HK) and glyceraldehyde phosphate
dehydrogenase (GAPDH) and
subsequently is converted to two
pyruvates and two ATPs by pyruvate
kinase (PK). Pyruvate is then
transported into the mitochondria by
the mitochondrial pyruvate carrier
(MPC) and enters the tricarboxylic
acid cycle (TCA), which feeds into
electron transport chain (ETC). The
ETC then produces 36 ATP under
normoxic conditions. Under ischemic
or hypoxic conditions, massive cell
death, including apoptosis and
necroptosis, is triggered on villous

epithelium; these effects are associated with a loss of crypt proliferation. The presence of enteral glucose protects ischemic gut epithelia through
multiple modes of actions. Mode 1: Despite the lack of mitochondrial ATP synthesis under hypoxic conditions, glycolytic ATP increases crypt cell
proliferation, thereby promoting epithelial restitution. However, ATP restoration does not prevent ischemic cell death. Mode 2: Glycolytic pyruvate
inhibits receptor-interacting protein (RIP) 1/3-dependent necroptotic pathways via suppression of mitochondrial reactive oxygen species (ROS). Mode
3: Hypoxic adaptation induces transcriptional upregulation of HK, GAPDH and PK, thus increasing glycolytic pathways. Mode 4: SGLT1-mediated
glucose uptake activates anti-apoptotic PI3K/Akt signaling pathways. 



metabolism after sodium-dependent transporter uptake.
Glutamine protection against I/R-induced epithelial
barrier damage is also partly dependent on its role as an
immune-enhancing agent (Kozar et al., 2004b; Sato et
al., 2005). In contrast, alanine and arginine (as non-
metabolizable solutes in the gut) cannot prevent
ischemia-induced barrier damage (Kozar et al., 2004a,b;
Sato et al., 2005). These results suggest that glucose and
glutamine are preferable fuels for epithelial cells and
confer protection against ischemic damage. 

ATP is generally considered to be the predominant
metabolite providing glucose protection in I/R damage.
However, the exact modes and sites of action of ATP had
not been elucidated until a recent study used liposomal
delivery of ATP in place of enteral glucose. Enteral
glucose has been found to prevent epithelial apoptosis
and necroptosis and to restore crypt proliferation in the
ischemic gut (Huang et al., 2011, 2016). However,
replenishment of ATP also prevents crypt dysfunction
but does not diminish the villous epithelial cell death or
correct the histopathological damage in the ischemic
intestine (Huang et al., 2016). These results are
consistent with the hypothesis that ATP is crucial for
active crypt proliferation and possibly for epithelial
restitution and healing after blood reperfusion.
Nevertheless, it challenges the traditional view that
energy depletion is the initiating factor triggering
epithelial cell death under ischemic stress and also
suggests that an alternative metabolite might be
responsible for the anti-death mechanisms. 
Roles of pyruvate

Pyruvate is the end product of glycolytic
metabolism. Under aerobic conditions, pyruvate is
transported by the mitochondrial pyruvate carrier (MPC)
and converted to acetyl-CoA, which enters into the
tricarboxylic acid (TCA) cycle; this cycle produces
nicotinamide adenine dinucleotide (NADH), which
enters the electron transport chain (ETC) and results in
ATP synthesis. In anaerobic conditions, pyruvate is
reduced by NADH, thus forming lactate and the
oxidized form of the co-factor NAD+. In addition to its
metabolic role, pyruvate is also an endogenous
scavenger for ROS, including superoxide and hydrogen
peroxide (Brand and Hermfisse, 1997; Kao and Fink,
2010). 

Abundant studies have shown that intraluminal or
intravenous administration of pyruvate derivatives
ameliorates free radical production and prevents
intestinal I/R-induced mucosal injury and barrier damage
(Cicalese et al., 1996; Cruz et al., 2011; Petrat et al.,
2011). However, the source of free radicals, either from
infiltrating phagocytes after blood reperfusion or from
the stressed epithelia, has been unclear. To further
investigate epithelial death, we have assessed the
protective effect of pyruvate in intestines subjected to
ischemic stress alone (Huang et al., 2016). Enteral
instillation of pyruvate mimics the protective effect by

glucose in terms of reduction of epithelial apoptosis and
necroptosis but does not reverse the crypt dysfunction in
the ischemic gut (Huang et al., 2016). These findings
suggest that glucose-mediated epithelial cell death
resistance is dependent on glycolytic pyruvate but not
ATP (Huang et al., 2016). In addition to direct
scavenging of free radicals, pyruvate also partially limits
subsequent reperfusion injury by preventing epithelial
death-dependent bacterial translocation and infiltration
of phagocytes. 
Roles of glucose metabolic enzymes 

Under low-oxygen conditions in ischemia or
inflammation, HIF-1 is translocated into the nuclei of
intestinal epithelial cells (Koury et al., 2004). HIF-1 is a
transcription factor that upregulates various glucose
metabolic enzymes (Denko, 2008; Lu et al., 2008). A
cytoprotective role of HIF-1 related to its transcriptional
regulation has been documented in models of mesenteric
ischemia and experimental colitis and in ileal loop
models with exposure to bacterial toxins (Karhausen et
al., 2004; Hart et al., 2011; Mones et al., 2011; Grenz et
al., 2012; Keely et al., 2014). Moreover, HIF-1
activation is also linked to the resolution of intestinal
ischemic injury as well as to adaptive protection by
ischemic/hypoxic preconditioning (Koury et al., 2004;
Chen et al., 2014). The glucose metabolic enzymes
upregulated by HIF-1 include hexokinase (HK),
glyceraldehyde phosphate dehydrogenase (GAPDH),
and pyruvate dehydrogenase kinase (PDK) (Denko,
2008; Lu et al., 2008). However, most studies showing
hypoxic adaptation for anaerobic glycolysis have been
performed in colon adenocarcinoma cell lines (Denko,
2008; Lu et al., 2008; Marin-Hernandez et al., 2009). It
therefore remains unclear whether findings in cancer cell
lines can be translated to normal epithelium. Further
studies on whether chronic or long-term HIF1-mediated
glucose death resistance can drive genetic mutation and
contribute to tumor transition from normal epithelium
are needed. Metabolic reprogramming related to
glycolytic enzymes in colon cancer, has been described
in recent reviews (Marin-Hernandez et al., 2009;
Semenza, 2010; Huang and Yu, 2015). 
Roles of SGLT1-mediated signaling pathways

Several lines of evidence indicate that
phosphatidylinositide 3-kinase (PI3K)/Akt and inhibitor
of kappa b (IκB)/nuclear factor kappa b (NFκB)
pathways are involved in non-nutritive mechanisms of
SGLT1-mediated glucose cytoprotection. Previous
studies have shown that SGLT1-dependent glucose
uptake inhibits epithelial cell apoptosis caused by
mesenteric I/R and microbial products, and activation of
the PI3K/Akt pathways partly contributes to the anti-
apoptosis response (Yu et al., 2005, 2006, 2008).
Cotransport of sodium and glucose triggers the
activation of Akt and results in recruitment of the
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sodium-hydrogen exchanger to the apical membrane
(Shiue et al., 2005), thus decreasing cellular acidosis.
Others have demonstrated that SGLT1 activation by
glucose or by non-metabolizable sugars suppresses
proinflammatory NFκB signaling and IL-8 production in
intestinal epithelial cells after endotoxemia (Palazzo et
al., 2008). NFκB signaling has been linked to anti-
apoptotic and pro-proliferative events in gastrointestinal
epithelial cells (Potoka et al., 2000; Egan et al., 2004; Li
et al., 2005; Liu et al., 2012). 
Roles of glucokinase and pro-apoptotic regulator 

An elegant study has demonstrated that glucose
deprivation in hepatocytes results in cell apoptosis
through a mechanism involving the dephosphorylation
of BAD (a pro-apoptotic Bcl2 family member), which is
associated with the suppression of glucokinase activity
(Danial et al., 2003; Danial, 2008). Functionally similar
to HK, which exists in all cell types, glucokinase is a
glycolytic enzyme specific to hepatocytes and pancreatic
β cells and acts in the first metabolic step, catalyzing
glucose to D-glucose-6-phosphate. During cell
apoptosis, oligomerization of BAK/BAD (in a
dephosphorylated form) neutralizes the pro-survival Bcl-
2, Bcl-XL, and Bcl-2 proteins and causes mitochondrial
outer membrane permeabilization and cytochrome c
release (Shimizu et al., 1999; Tsujimoto and Shimizu,
2000). BAD normally resides in a mitochondrial
complex with glucokinase, and the phosphorylation of
BAD is necessary for maximal glucokinase activity for
glycolysis in hepatocytes (Danial et al., 2003).

The finding demonstrates that the BAD-glucokinase
interaction is a key component of the glucose sensing
machinery in normal hepatocytes. However, under cell
death stimuli (e.g., glucose deprivation), dephospho-
rylated BAD coordinates the apoptotic and glycolytic
pathways by simultaneously driving cell death and
diminishing glucose utilization and metabolism (Danial
et al., 2003; Gimenez-Cassina and Danial, 2015). Cells
undergoing apoptosis also show decreased glycolytic
ATP generation. This finding, together with our finding
that restoration of ATP in the ischemic gut does not
prevent epithelial apoptosis (Huang et al., 2016),
suggests that an energy decrease may not be the
initiating factor but instead may be a consequence of cell
death. More importantly, the pro-proliferation ATP is not
the major metabolite responsible for death resistance
conferred by glucose in gut ischemia. 
Concluding remarks 

Novel findings challenge the traditional view of
energy depletion as the major underlying cause of
ischemic cell death and also argue against ATP being the
principal protective glucose metabolite. The current
understanding is that ATP is crucial for maintenance of
crypt proliferation, whereas glycolytic pyruvate is the
predominant metabolite for inhibition of villous

epithelial death under ischemic stress. Overall, enteral
glucose uptake (uncoupled with energy production)
confers death resistance in ischemic epithelium,
probably through multiple mechanisms that involve
pyruvate-mediated free radical scavenging and SGLT1-
mediated anti-apoptotic signaling. 
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