
Summary. Hirschsprung disease (HSCR), or
aganglionic megacolon, is a developmental disorder
characterised by the absence of ganglion cells along
variable length of the distal gastrointestinal tract, leading
to the most common form of functional intestinal
obstruction in neonates and children. Aganglionosis is
attributed to a failure of neural crest cells to migrate,
proliferate, differentiate or survive during enteric
nervous system (ENS) development in the embryonic
stage. The incidence of HSCR is estimated at 1/5000 live
births and most commonly presents sporadically with
reduced penetrance and male predominance, although it
can be familial and may be inherited as autosomal
dominant or autosomal recessive. In 70% of cases,
HSCR occurs as an isolated trait and in the other 30%
HSCR is associated with other congenital malformation
syndromes. HSCR has a complex genetic etiology with
several genes and loci being described as associated with
either isolated or syndromic forms. These genes encode
for receptors, ligands (especially those participating in
the RET and EDNRB signaling transduction pathways),
transcriptional factors or other cell elements that are
usually involved in the neural crest cell development and
migration that give rise to ENS. Nevertheless, the RET
proto-oncogene is considered the major disease causing
gene in HSCR. A common RET variant within the
conserved transcriptional enhancer sequence in intron 1
has been shown to be associated with a great proportion
of sporadic cases and could act as a modifier by
modulating the penetrance of mutations in other genes
and possibly of those mutations in the RET proto-
oncogene itself.
Key words: Hirschsprung’s disease, Enteric nervous
system, RET proto-oncogen, Molecular genetics

Introduction

Hirschsprung disease (HSCR, OMIM: 142623), or
aganglionic megacolon, is a developmental disorder
characterised by the absence of intramural ganglion cells
in the submucosal and myenteric plexuses along variable
length of the distal gastrointestinal tract, leading to the
most common form of functional intestinal obstruction
in neonates and children (Hirschsprung, 1888;
Whitehouse and Kernohan, 1948). Such aganglionosis is
attributed to a failure of neural crest cells to migrate,
proliferate, differentiate or survive during enteric
nervous system (ENS) development in the embryonic
stage (Okamoto and Ueda, 1967). 

The incidence of HSCR is estimated at 1/5000 live
births (Bodian and Carter, 1963). There is a sex bias
with a preponderance of affected males and a sex ratio of
4/1 (Badner et al., 1990). Interestingly, the male:female
ratio is significantly higher for S-HSCR (4.2–4.4) than
for L-HSCR (1.2–1.9) (Badner et al., 1990; Torfs et al.,
1998). HSCR most commonly presents sporadically,
although it can be familial and may be inherited as
autosomal dominant or autosomal recessive, with
reduced penetrance and male predominance (Passarge,
1967; Badner et al., 1990). In 70% of cases, HSCR
occurs as an isolated trait and in the other 30% HSCR is
associated with other congenital malformation
syndromes (Amiel et al., 2008).

The classification of HSCR is according to the
length of the aganglionic segment (Chakravarti and
Lyonnet, 2001). While the internal anal sphincter is the
constant inferior limit, patients could be classified as
short-segment HSCR (S-HSCR: 80% of cases) when the
aganglionic segment does not extend beyond the upper
sigmoid, and long-segment HSCR (L-HSCR: 20% of
cases) when aganglionosis extends proximal to the
sigmoid. A less common HSCR variety included within
the L-HSCR forms is total colonic aganglionosis (TCA,
3–8% of cases) in which the entire colon and the
terminal portion of the ileum is involved (Nihoul-Fékété
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et al., 1986). 
Molecular genetics in HSCR

HSCR has a complex genetic etiology with several
genes being described as associated with either isolated
or syndromic forms. These genes encode for receptors,
ligands (especially those participating in the RET and
EDNRB signaling transduction pathways), trans-
criptional factors or other cell elements that are usually
involved in the neural crest cell development and
migration that give rise to ENS (Table 1, Fig. 1).
Nevertheless, the RET proto-oncogene is considered the
major disease causing gene in HSCR.
The RET signalling pathway

The RET (REarranged during Transfection) proto-
oncogene (OMIM +164761), localized at 10q11.2
(Ceccherini et al., 1993), encodes a transmembrane
receptor with a cadherin-like extracellular domain, a
cysteine-rich region and a intracellular tyrosine kinase
domain (Schneider, 1992). RET is activated by the glial
cell line-derived neurotrophic factor family ligands
(GDNF family ligands, GFLs), a neurotrophic factor
family comprising four members with approximately
40% aminoacid identity with each other: GDNF,
neurturin (NRTN), artemin (ARTN), and persephin
(PSPN) (Lin et al., 1993, Kotzbauer et al., 1996; Baloh
et al., 1998; Milbrandt et al., 1998). The GFLs function
as homodimers and activate RET through four different

glycosyl phosphatidylinositol-linked co-receptors
(GFR·1-4). The formation of such multisubunit
complexes promotes the transient dimerization of RET,
leading to the autophosphorylation of specific tyrosine
residues located in the intracellular domain and the
subsequent activation of a wide spectrum of signalling
pathways (Takahashi, 2001; Airaksinen and Saarma,
2002). RET activation is crucial in ENS development,
and both GDNF and NRTN have been demonstrated to
promote the survival, proliferation, and differentiation of
enteric neurons (Taraviras et al., 1999; Natarajan et al.,
2002). Mice lacking Ret, Gdnf, or Gfr·1 share a similar
phenotype, showing total intestinal aganglionosis caused
by impaired migration of immature enteric neural crest-
derived cells, whereas NRTN or GFR·2 knockout mice
show a middle phenotype with moderate deficit of
enteric neurons (Schuchardt et al., 1994; Moore et al.,
1996; Cacalano et al., 1998; Heuckeroth et al., 1999;
Rossi et al., 1999). 

RET

Over 100 mutations have been identified in HSCR
patients, including large deletions encompassing the
RET gene, microdeletions and insertions, nonsense,
missense and splicing mutations (Edery et al., 1994;
Romeo et al., 1994; Yin et al., 1994; Attie et al., 1995a;
Angrist et al., 1995; Seri et al., 1997; Svensson et al.,
1998; Fitze et al., 2002; Garcia-Barceló et al., 2004;
Ruiz-Ferrer et al., 2006; Núñez-Torres et al., 2011), The
Human Gene Mutation Database: http://www.hgmd.
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Table 1. Genes associated with isolated or syndromic HSCR.

Gene Map location Phenotype Inheritance Mouse models

RET 10q11.2 HSCR/HSCR-MEN2/FMTC Dominant, incomplete penetrance TIA, renal agenesis
Dominant

GDNF 5p13.2 HSCR Dominant, low penetrance TIA, renal agenesis
NRTN 19p13.3 HSCR Dominant, low penetrance Moderate deficit of enteric neurons
PSPN 19p13.3 HSCR Dominant, low penetrance -
GFRA1 10q25.3 HSCR Dominant, low penetrance TIA, renal agenesis
EDNRB 13q22.3 WS4/HSCR Recessive/ Dominant Aganglionosis, coat spotting
EDN3 20q13.32 WS4/HSCR Recessive/ Dominant Aganglionosis, coat spotting
ECE1 1p36.12 HSCR with cardiac defects, Dominant Aganglionosis, coat spotting, craniofacial defects

craniofacial abnormalitie 
and autonomic dysfunction

SOX10 22q13.1 WS4/HSCR Dominant Aganglionosis, coat spotting
PHOX2B 4p12 CCHS/Neuroblastoma+HSCR Dominant TIA, no autonomic nervous system, ventilatory anomalies
NTF3 12p13.31 HSCR Dominant, low penetrance Reduced enteric neurons
NTRK3 15q25.3 HSCR Dominant, low penetrance Reduced enteric neurons
PROKR1 2p14-p13.3 HSCR Dominant, low penetrance -
PROKR2 20p12.3 HSCR Dominant, low penetrance Hypoplasia of the olfactory bulb and reproductive system
PROK1 1p13.3 HSCR Dominant, low penetrance -
SEMA3A 7p12.1 HSCR Dominant, low penetrance Deficit of cardiac sympathetic innervation and stellate 

ganglia malformation
SEMA3D 7q21.11 HSCR Dominant, low penetrance -
NRG1 8p12 HSCR Dominant, low penetrance Letal from cardiac defect
NRG3 10q23.1 HSCR Dominant, low penetrance -
ZFHX1B 2q22.3 MWS Dominant Letal at gastrulation
KIAA1279 10q22.1 GSS Recessive -
L1CAM Xq28 HSAS/MASA spectrum+HSCR X-linked Hydrocephalus



org/)]. However, RET Copy Number Variations (CNVs)
are not a common molecular cause of Hirschsprung
disease (Núñez-Torres et al., 2009). In contrast to
multiple endocrine neoplasia type 2 (MEN 2), a cancer
syndrome caused by specific germline mutations of RET
(Eng, 1999), there is no mutational hot spot and RET
mutations identified in HSCR occur throughout the gene.
Biochemical studies demonstrated variable functional
consequences: mutations affecting coding sequences in
the extracellular domain of RET result in disturbed
transport of RET to the plasma membrane; mutations
affecting the cystein-rich domain result in covalent
dimerization of the protein and reduced localization at
the plasma membrane; mutations targeting the kinase
domain cause the disruption or alteration of the catalytic
activity of the receptor and; mutations located in the C-
terminal tail cause alteration of binding proteins and
hence disruption of signaling (Kashuk et al., 2005).
While in vitro MEN 2 mutations have been shown to be
activating mutations leading to constitutive dimerisation
of the receptor and to transformation (Santoro et al.,

1995), haploinsufficiency is the most likely mechanism
for HSCR mutations (Pasini et al., 1995; Carlomagno et
al., 1996; Iwashita et al., 1996, 2001; Pelet et al., 1998). 

Despite extensive screening, mutations in the RET
coding sequence (CDS) account for only up to 50% of
familial and 7-20% of sporadic cases (Amiel et al.,
2008). However, the involvement of RET in the
pathogenesis of HSCR has been further supported by the
existence of a specific haplotype, constituted by
common RET polymorphisms, which seems to have a
key role in the majority of sporadic forms. The starting
point to the identification of such haplotype was the
finding of a family segregating both HSCR and MEN2,
where the homozygous silent variant A45A (c.135G>A,
rs1800858, exon 2) was present in the only member with
HSCR phenotype (Borrego et al., 1998; Fernández et al.,
2003). Further analysis of this common variant together
with another 6 common polymorphisms, in the context
of sporadic HSCR, revealed a significant over-
representation of this variant and the RET haplotypes
carrying it (Borrego et al., 1999, 2000). These findings
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Fig. 1. The genetic complexity
observed in HSCR could be
explained by the complex nature of
ENS development, which is
regulated by an ever-increasing
range of molecules and signalling
pathways involving both the NCCs
and intestinal environment.



were independently confirmed in additional HSCR series
of different origins (Fitze et al., 1999; García-Barceló et
al., 2003a,b). Subsequently, it was demonstrated that
A45A anchors ancestral haplotypes in linkage
disequilibrium, with a putative common founding
susceptibility locus estimated to be 22 to 50 kb upstream
(Borrego et al., 2003a; Sancandi et al., 2003). Systematic
screening of the region upstream of the A45A SNP,
comprising RET intron 1, exon 1, and promoter, revealed
that the ancestral haplotype associated with HSCR was
characterised by the presence of two specific SNPs
located at -5 and -1 from the transcription start site (-5
A>G, rs10900296 and –1 C>A, rs10900297) (Fernández
et al., 2005; Burzynski et al., 2005; Garcia-Barceló et al.,
2005; Griseri et al., 2005; Pelet et al., 2005). It was
shown that the AC-haplotype decreased the RET
promoter activity in luciferase assays (Fitze et al., 2003;
Fernández et al., 2005). 

Based on association studies and comparative
genomics focused on conserved non-coding sequences,
one of the HSCR-associated RET SNPs (c.73+9277C>T,
rs2435357), located within a highly conserved enhancer-
like sequence in intron 1 (MCS+9.7) (Emison et al.,
2005, 2010), was identified to make a 20-fold greater
contribution to risk than coding mutations (Emison et al.,
2005). These data led the authors to postulate that the
SNP rs2435357 is most likely a low-penetrance disease-
causing variant. They supported this idea with reporter
(luciferase) assays and showed that, indeed, the
MCS+9.7 region, containing the disease-associated
variant (T-allele), reduced promoter activity when
compared to the wild-type sequence (C-allele).
Additional functional studies demonstrated that the T
variant disrupts the SOX10 binding site within MCS+9.7
and compromises RET transactivation (Emison et al.,
2010). Interestingly, the frequency of the predisposing T
allele varies according to HSCR prevalence in various
ethnic backgrounds and the penetrance is both dose-
dependent, greater in males than in females and also
increased in patients with rare RET coding mutations
(Emison et al., 2010; Núñez-Torres et al., 2011).
Recently, one SNP located closed to rs2435357 and in
complete linkage disequilibrium with it (c.73+9494A>C,
rs2506004) has been identified as a binding site for
NXF/ARNT2 and SIM2-ARNT2 that modifies RET
expression, demonstrating that more than one SNP can
influence gene expression and ultimately HSCR
phenotype (Sribudiani et al., 2011). In summary, the
combination of common variants, such as the so-called
enhancer variants, and rare variants, such as RET CDS
mutations, contributes to the risk of HSCR and seems to
explain in part the complexity of the disease. In addition,
a gender effect exists on both the transmission and
distribution of rare coding and common HSCR causing
mutations. In this sense, an asymmetrical parental origin
is observed for RET CDS mutations with a higher
maternal inheritance due to a differential reproductive
rate between male and female carriers (Jannot et al.,
2012). 

GDNF-family ligands and co-receptors
The relevance of RET signaling pathway during

ENS development and the prominent role of the RET
receptor in the pathogenesis of HSCR suggested that the
genes encoding the GFLs and their co-receptors could be
excellent candidates to be involved in the disease. With
regard to the genes encoding the co-receptors (GFRA1-
4), no mutations have been identified in HSCR patients
(Angrist et al., 1998; Myers et al., 1999; Onochie et al.,
2000; Vanhorne et al., 2001) except for a deletion at the
GFRA1 (OMIM *601496) locus with incomplete
penetrance in two non-related families (Borrego et al.,
2003b; Sánchez-Mejías et al., 2010a). In contrast,
regarding the genes encoding the ligands, different
mutational screenings in HSCR patients have identified
several heterozygous germline mutations in GDNF
(OMIM *600837), although often in combination with
RET mutations or other genetic alterations (Angrist et
al., 1996; Ivanchuk et al., 1996; Salomon et al., 1996;
Hofstra et al., 2000; Martucciello et al., 2000; Ruiz-
Ferrer et al., 2011a), indicating that those mutations
could be neither necessary nor sufficient to cause HSCR.
Subsequent analysis of the functional role of mutations
located in the mature region of GDNF demonstrated no
effect on RET phosphorylation, even when a reduction
in the binding affinity to GFRα1 was observed (Eketjall
et al., 1999; Borghini et al., 2002). Taking these findings
into account, such mutations could be regarded as
genetic changes with a modulatory effect that could
contribute to the disease via interaction with other
susceptibility loci.

On the other hand, three mutations have been
reported in NRTN (OMIM *602018) (Doray et al., 1998;
Ruiz-Ferrer et al., 2011a), only one in ARTN (OMIM
*603886) (Ruiz-Ferrer et al., 2011a) and another in
PSPN (OMIM *602921) (Ruiz-Ferrer et al., 2011a).
Interestingly, in vitro analyses revealed a decreased
secretion level of correctly processed peptide for the
variant R91C in PSPN and altered RET activation by a
significant reduction of autophosphorylation also for this
variant and F127L in NRTN, supporting their effects on
HSCR phenotype (Ruiz-Ferrer et al., 2011a). Generally,
the variants in the GFL genes behave as incompletely
penetrant, since they were carried by other healthy
members of the family. This would completely fit with
the additive model of inheritance proposed for HSCR, in
which the expression of the disease seems to depend on
the contribution of different combinations of gene alleles
acting in an additive or multiplicative fashion. Following
this model, those genetic variants could modulate the
penetrance of mutations located in other genes or modify
expressivity of the disease in affected individuals. These
variants may be contributing to the final phenotype
acting in combination with additional mutational events
in other genes, such as the common RET variant within
the transcriptional enhancer in intron 1, since most of the
patients have inherited these variants from their healthy
parents (Ruiz-Ferrer et al., 2011a). Presumably, none of
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these mutations are likely to cause HSCR independently,
but the co-occurrence of both different mutational events
in the same patient may have contributed to the
manifestation of the phenotype. 
The endothelin signalling pathway

A second pathway involved in HSCR is the
Endotheline Receptor Type B (EDNRB) pathway.
EDNRB and EDNRA are G-protein-coupled
heptahelical receptors that transduce signals through the
endothelins (EDN1, 2, 3) (Inoue et al., 1989; Sakurai et
al., 1992). The endothelins are synthesized as much
larger proteins which are cleaved by two related
membrane-bound metalloproteases, the endothelin
converting enzymes (ECE1, 2), to produce an active
peptide. In mouse embryonic gut, Ednrb is expressed in
the migrating enteric neural crest cells and Edn3 is
mainly expressed in the midgut and the hindgut
mesenchyma during the early phases of enteric neural
crest cell migration, and at high levels in the caecum and
the proximal colon when the enteric neural crest cells
colonize the terminal gut region (Leibl et al., 1999;
Barlow et al., 2003). Furthermore, Edn3 mutant mouse
has fewer neural crest stem cells compared to the wild-
type mouse (Barlow et al., 2003), and it was
demonstrated that cell differentiation is inhibited by
EDN3-EDNRB signalling (Bondurand et al., 2006).
These studies together showed that EDN3-EDNRB
signalling is important for enteric neural crest cell
migration and proliferation, and for maintaining enteric
neural crest cells in their progenitor state during ENS
development. In addition, Edn3, Ednrb and Ece1
knockout mice showed aganglionosis and pigmentary
abnormalities (Baynash et al., 1994; Hosoda et al., 1994;
Yanagisawa et al., 1998), similar to the phenotypic
abnormalities seen in human patients with Shah-
Waardenburg syndrome (Waardenburg syndrome type 4,
WS4, OMIM 277580). Waardenburg syndrome (WS,
OMIM 193500, OMIM 148820, OMIM 193510), a
clinically and genetically heterogeneous autosomal
dominant condition, is by far the most frequent condition
combining sensorineural deafness and pigmentary
anomalies due to an abnormal proliferation, survival,
migration, or differentiation of neural-crest-derived
melanocytes, and in combination with HSCR defines the
WS4 type.

The critical role of the endothelin pathway in HSCR
was demonstrated with the study of an inbreed Old
Order Mennonite community. The occurrence of
multiple cases of both isolated HSCR and WS4 in the
community facilitated the mapping of another major
HSCR susceptibility gene to the chromosomal region
13q22 (Puffenberger et al., 1994a), and an EDNRB
(OMIM *131244) missense mutation (W276C,
c.828G>T) was identified (Puffenberger et al., 1994b).
However, this mutation was neither fully dominant nor
fully recessive. Subsequent EDNRB mutation analyses
conducted on both isolated HSCR and WS4 patients

revealed that homozygous EDNRB mutations were
associated with WS4 (Attie et al., 1995b; Hofstra et al.,
1996; Edery et al., 1996; Pingault et al., 2001; Verheij et
al., 2002) and heterozygous mutations with isolated
HSCR (Amiel et al., 1996; Auricchio et al., 1996;
Chakravarti, 1996; Kusafuka et al., 1996; Kusafuka and
Puri, 1997; Tanaka et al., 1998; Gath et al., 2001;
Garcia-Barceló et al., 2004; Sánchez-Mejías et al.,
2010b). Functional analyses of EDNRB missense
mutations showed impairment of the intracellular
signalling (Kusafuka et al., 1996; Abe et al., 2000; Fuchs
et al., 2001). Overall, EDNRB mutations account for 5%
of the isolated HSCR phenotype. 

HSCR patients have also been screened for
mutations in the human EDN3 (OMIM *131242) and
ECE-1 (OMIM *600423). Only one heterozygous ECE-
1 mutation has been identified in a single patient
combining HSCR with craniofacial and cardiac defects
(R742C, c.2224C>T) (Hofstra et al., 1999). Very few
EDN3 mutations have been characterized in HSCR
patients and, with exceptions, similar genetic behaviour
to EDNRB mutations was observed. In this sense, the
association of homozygous mutations with WS4 and
heterozygous mutations with isolated HSCR may
indicate that melanocytes and enteric ganglia differ in
sensitivity to the varying levels of EDNRB signalling
(McCallion and Chakravarti, 2001). The evaluation of
EDN3 as a susceptibility gene for HSCR using common
polymorphisms revealed the association of a SNP
(rs6064764) with the disease (Sánchez-Mejías et al.,
2010b). It is plausible the existence of linkage
disequilibrium with some functional, still unidentified
allele of these genes, or this allele might be acting as a
functional variant per se leading to a higher
predisposition for HSCR, although its precise molecular
mechanism remains to be elucidated. In any case, those
results suggest that this gene might be considered as a
common susceptibility gene for sporadic HSCR in a
low-penetrance fashion, more than a minor gene for this
disease as it is currently considered (Fuchs et al., 2001). 
NTF-3/TRKC signalling pathway

Neurotrophin 3 (NTF-3, OMIM *162660) encodes a
257 aminoacid protein member of the highly
homologous neurotrophin family (Levi-Montalcini et al.,
1987). The signal transduction pathway of NTF-3 is
initiated by high-affinity binding to the extracellular
domain of the tyrosine kinase receptor TRKC (encoded
by NTRK3, OMIM *191316) (Klein et al., 1989;
Lamballe et al., 1991). Several studies on mice have
provided evidence that NTF-3 is secreted by the
non–crest-derived enteric mesenchyme and promotes the
development and/or survival of neurons and glia from
enteric neural crest-derived cells expressing the receptor
TrkC (Chalazonitis et al., 1994; Chalazonitis, 2004).
Mice lacking NTF-3 or its receptor TrkC have reduced
numbers of both myenteric and submucosal neurons, and
mice overexpressing NTF-3 have increased numbers of
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myenteric neurons. Moreover, analysis of the
localization of neurotrophins and their receptors in
developing and postnatal human intestine, both in
normal individuals and in patients with HSCR, revealed
that NTF-3 is absent in the aganglionic colon and
reduced in transitional intestine (Hoehner et al., 1996).
Therefore, the requirement of the NTF-3/TrkC signalling
for the proper development of the ENS, together with the
evidence presented by the murine models, has prompted
the investigation of the possible involvement of the
human NTF-3 and TRKC in HSCR. 

In this sense, mutational screening of NTF-3 as well
as NTRK3 have been performed (Ruiz-Ferrer et al.,
2008; Fernández et al., 2009). The most relevant
findings were the identification of a novel sequence
variant in NTF-3, G76R (c.226G>A), present in 2
unrelated patients and a novel variant within the tyrosine
kinase domain of NTRK3, R645C (c.1933 C>T), in a
family with two affected siblings also carrying a RET
splicing mutation. It suggests that both RET and NTRK3
mutations may act together, being necessary and
sufficient for the appearance of the disease. Interestingly,
the detection of a novel EDN3 mutation in the patient
with aganglionosis extending to the ileum, and not in his
affected sibling with a milder phenotype, strongly
suggests that the EDN3 gene is acting as a phenotype-
modifier factor in this particular family and that the
accumulation of gene variants predisposing to HSCR in
the genetic background of the patient has a greater
impact on expression of the disease (Sánchez-Mejías et
al., 2009). These results assess the importance of the
NTF-3/NTRK3 signalling pathway in ENS disorders and
support the complex additive model of inheritance
proposed for HSCR disease.
Prokineticins signalling pathway

Prokineticins (PROK1 and PROK2) belong to the
AVIT protein family, a recently identified family of
cysteine-rich secreted protein that share an identical
amino terminal sequence crucial for their biological
activities (Li et al., 2001; Kaser et al., 2003). These
proteins are known to bind and activate two closely
related G protein-coupled receptors, PROKR1 and
PROKR2, leading to the mobilization of calcium, the
stimulation of phosphoinositide-3-kinase turnover, and
the activation of the mitogen activated protein kinase
(MAPK) signalling pathway (Lin et al., 2002; Soga et
al., 2002). PROKR1 expression was demonstrated in
mouse enteric neural crest derived cells and Prok-1 was
shown to work coordinately with GDNF in the
development of the ENS (Ngan et al., 2007a, 2008).
Firstly, both GDNF and Prok-1 share common
downstream elements, prominently the MAPK and Akt
pathways, which provide multiple points of insertions
between these two factors and lead them to exhibit
similar biological functions (Ngan et al., 2007a). In
addition, GDNF potentiate the proliferative and
differentiation effects of Prok-1 by up-regulating

PROKR1 expression in enteric NCCs (Ngan et al.,
2008). This functional redundancy of PROKR1/Prok-1
and RET/GFRa1/GDNF signalling supports the idea that
Prok-1/PROKR1 provides a compensatory pathway to
ensure the proper development of ENS.

Recently, using neurosphere cultures obtained from
human ENS derived cells, it has been demonstrated that
not only PROKR1 was present in neural stem cells and
neuronal precursors, but the PROKR2 receptor was also
observed (Ruiz-Ferrer et al., 2011b). These results
suggest that PROKR2 would have a relevant role by
inhibiting apoptosis of enteric neuronal precursors, as it
was previously described in neural crest-derived
neuroblastoma cells (Ngan et al., 2007b). Therefore,
PROKR2 could mediate neuronal protection or survival
not only in the central nervous system (Melchiorri et al.,
2001), but also during ENS development. Accordingly,
PROKR1, PROK1, PROKR2 and PROK2 were
evaluated as susceptibility genes for HSCR, based on the
etiopathogenesis of the disease (Ruiz-Ferrer et al.,
2011b). Several missense variants in PROKR1, PROK1
and PROKR2 genes were detected, most of them
affecting highly conserved amino acid residues of the
protein and located in functional domains of both
receptors, which suggests a possible deleterious effect in
their biological function. Interestingly, it has been
observed that the presence of sequence variants in these
genes in HSCR patients are frequently associated to
mutations in RET proto-oncogene or GDNF,
contributing to the manifestation of the more severe
phenotypes. These results provide the first evidence to
consider them as susceptibly genes for HSCR.
NRGs signalling pathway

Through a Genome Wide Association Study
(GWAS), the NRG1 gene (OMIM *142445) was
successfully identified as a new candidate gene for
HSCR (Garcia-Barcelo et al., 2009). NRG1 is a trophic
factor that contains an epidermal growth factor (EGF)-
like domain that signals by stimulating ErbB receptor
tyrosine kinases and activates some cellular processes
such as proliferation, differentiation, migration,
apoptosis and cellular survival (Riese et al., 1995;
Tzahar et al., 1996). It has been described that NRG1
receptors ErbB2/ErbB3 are expressed in mouse vagal
neural crest cells entering the developing gut and in
adult intestinal epithelia of both humans and mice
(Prigent et al., 1992; Britsch et al., 2001; Britsch, 2007;
Paratore et al., 2002). In addition, NRG1 is also
expressed in mice and human intestinal mucosa and
enteric ganglia (Orr-Urtreger et al., 1993; Meyer and
Birchmeier, 1994). Moreover, a recent study
demonstrated that the mRNA expression levels of NRG1
were significantly higher in tissues of HSCR than those
in controls, and the increased NRG1 protein levels in
HSCR were consistent with the mRNA levels, which
suggests that the aberrant expression of NRG1 may play
an important role in the pathology of HSCR (Tang et al.,
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2011). To refine the locus on 8p12 linked to the disease
(Garcia-Barcelo et al., 2009), a wide spectrum of SNPs
were genotyped in ethnic Chinese HSCR patients and
controls (Tang et al., 2012a). Genotype analysis
narrowed down the HSCR-associated region to six of the
most associated SNPs mapping to the NRG1 promoter.
Of note, significant differences in NRG1 expression
levels between patients and controls bearing the same
rs10088313 risk genotype were detected (Tang et al.,
2011). This seems to indicate that the effects of NRG1
common variants are likely to depend on other alleles or
epigenetic factors present in patients and would account
among other factors for the variability in the genetic
predisposition to HSCR. Finally, the implication of
NRG1 in HSCR has also been demonstrated through the
identification of coding mutations whose pathogenic role
was demonstrated by different functional approaches
(Luzón-Toro et al., 2012; Tang et al., 2012).

On the other hand, with the data generated from the
GWAS the contribution of CNVs to HSCR was also
assessed, leading to the identification of many rare genic
CNVs exclusive to patients. In this regard, a deletion
affecting the NRG3 gene (OMIM *605533), a paralog of
NRG1, was detected. This fact prompted a subsequent
follow-up on NRG3, revealing the existence of both
deletions and duplications within this gene, associated to
HSCR. Stratification of patients by presence/absence of
HSCR-associated syndromes showed that while
syndromic-HSCR patients carried significantly longer
CNVs than the non-syndromic or controls, non-
syndromic patients were enriched in CNV number when
compared to controls or the syndromic counterpart.
These results suggested a role for NRG3 in HSCR
etiology and provide insights into the relative
contribution of structural variants in both syndromic and
non-syndromic HSCR (Tang et al., 2012b).
SEMAs signalling pathway

Another GWAS led to the identification of a
significant cluster of SNPs in a region on chromosome 7,
containing significant association to HSCR with allelic
effects independent of RET, which fall downstream from
the protein SEMA3D (7q21.11; OMIM 609907) and
upstream from SEMA3A (7p12.1; OMIM 603961),
SEMA3E (7q21.11; OMIM 608166) and SEMA3C
(7q21-q31; OMIM 602645). In this study, S-HSCR trios
were analyzed to strengthen the significance of the
SEMA SNPs cluster, and refined the location of its peak.
The four SEMA family III members demonstrated very
similar temporo-spatial patterns of expression
throughout the gut. They were co-expressed with RET in
these tissues, supporting the possibility that one or more
might modify RET function in the developing ENS. In
addition, next-generation sequencing technologies have
allowed the detection of different missense mutations in
the SEMA genes potentially involved in HSCR (Jiang et
al., 2012; Luzón-Toro et al., 2013). 

Different studies had suggested a role for members

of the SEMA family in NCC development defects, the
proliferation, migration, and/or differentiation of which
might be a cause of HSCR (Yu and Moens, 2005; Berndt
and Halloran, 2006; Anderson et al., 2007; Lwigale and
Bronner-Fraser, 2009). Recently, it has been proposed
that increased SEMA3A expression may be a risk factor
for HSCR pathology in a subset of HSCR patients, based
on the upregulation in the aganglionic smooth muscle
layer of the colon (Shepherd and Raper, 1999). In
addition, the association between two SEMA3A common
polymorphisms and the risk of HSCR in the
Northeastern Chinese and Thai populations has been
validated, as was previously demonstrated in Caucasian
population (Wang et al., 2011; Phusantisampan et al.,
2012). 
Transcriptional Factors and other cell elements

SOX10

SOX10 (OMIM *602229) encodes a transcription
factor belonging to an evolutionary conserved protein
family, which contains a central high mobility group
(HMG) DNA binding/DNA-bending domain and a C-
terminal transactivation domain ( Pevny and Lovell-
Badge, 1997; Wegner, 1999). In a manner similar to all
members of this family, SOX10 exerts its function
through binding to the promoters or enhancer sequences
of its target genes, alone or in association with other
transcription factors (Kuhlbrodt et al., 1998; Kamachi et
al., 1999). SOX10 is a key transcription factor during
neural-crest derived cell migration and differentiation,
and RET and EDNRB are known to be target genes for
SOX10 regulation (Kuhlbrodt et al., 1998; Kamachi et
al., 1999; Bondurand et al., 2000, 2001; Peirano and
Wegner, 2000; Lang and Epstein, 2003; Ludwig et al.,
2004; Zhu et al., 2004; Murisier et al., 2007). SOX10
modulates gene expression of pluripotent neural-crest
cells that migrate from the neural tube throughout the
embryo along several pathways during embryogenesis.
Those precursors give rise to enteric neurons and glia,
some of the craniofacial skeletal tissue, melanocytes of
the skin and inner ear, in addition to other cell types (Le
Douarin and Kalcheim, 1999). 

The significance of SOX10 in HSCR was revealed
through the study of a mouse model for WS4 in human
(dominant megacolon, Dom) (Lane and Liu, 1984). The
molecular defect in Dom mice was a mutation in the
Sox10 gene (Pingault et al., 1997; Southard-Smith et al.,
1998, 1999; Herbarth et al., 1998). Heterozygous Dom
mice presented with distal colonic aganglionosis and
localized hypomelanosis of the skin and hair (features
similar to those in WS), which indicated that neural
crest-derived melanocytes and enteric neurons were
affected in Sox10 mutants. Dom homozygous mice were
embryonic lethal. 

WS4 phenotype has been reported to be caused by
heterozygous SOX10 point mutations as well as gross
deletions, presented in 45–55% of patients (Bondurand
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et al., 2007; Pingault et al., 1998, 2002; Inoue et al.,
1999; Touraine et al., 2000; Sham et al., 2001;
Shimotake et al., 2007). Moreover, a study searching for
deletions within SOX10 regulatory sequences has
described the first characterization of a WS4 patient
presenting with a large deletion encompassing three of
these enhancers (Bondurand et al., 2012). However, 15-
35% of WS4 remains unexplained at the molecular level,
suggesting that other genes could be involved and/or that
mutations within known genes may have been missed in
previous screenings. On the other hand, the role of the
RET common hypomorphic allele has been studied in the
context of WS patients leading to the conclusion that it is
not significant for the manifestation of the HSCR
phenotype in WS4 patients (de Pontual et al., 2007a).

In this sense, non-syndromic HSCR disease was
initially thought not to be associated to mutations at this
particular locus. However, abnormal SOX10 gene
expression could be observed in aganglionic intestine of
isolated HSCR patients suggesting a role in the
pathogenesis of HSCR (Pingault et al., 1998; Chan et al.,
2003). Recently, a screening of both point mutations and
gene-dosage anomalies of its coding sequence was
performed in a series of 196 HSCR patients, the largest
patient series evaluated so far (Sánchez-Mejías et al,
2010c). Interestingly, a truncating mutation in SOX10
has been found in a patient presenting aganglionosis as
an isolated trait (Sánchez-Mejías et al., 2010c). This was
the first time that a SOX10 mutation was detected in an
isolated HSCR patient, which points out the association
of this gene with the pathogenesis of HSCR per se, not
only as a part of a syndromic trait.

PHOX2B

The paired-like homeobox 2b gene (PHOX2B,
OMIM *603851) encodes a transcription factor involved
in the development of several noradrenergic neurone
populations in mice. In the murine model, Phox2b
expression starts as soon as enteroblasts invade the
foregut mesenchyme and is maintained throughout
development into enteric neurons, so that homozygous
disruption of Phox2b in mice leads to an absence of
enteric ganglia (Pattyn et al., 1999). Furthermore, there
is no Ret expression in Phox2b mutant embryos
indicating that regulation of Ret by Phox2b could
account for the failure of the ENS to develop (Pattyn et
al., 1999; Dubreuil et al., 2000). The PHOX2B
homology observed between humans and mice, as well
as the compelling evidence of its key function in the
development of neural crest derivatives, have made it an
attractive target for study as a potential gene involved in
human neurocristopathies. In this sense, the major role
of the gene is well established in the pathogenesis of
Congenital Central Hypoventilation Syndrome (CCHS
or Ondine’s curse, OMIM 209880), a rare disorder
which presents in newborns as apparent hypoventilation
with monotonous respiratory rates and shallow breathing
either during sleep only or while awake as well as

asleep; autonomic nervous system dysregulation
(ANSD); or in some individuals, as altered development
of neural crest-derived structures (i.e., HSCR) and/or
tumors of neural crest origin (neuroblastoma,
ganglioneuroma, and ganglioneuroblastoma) (Roshkow
et al., 1988; Levard et al., 1989; Weese-Mayer et al.,
1993). The association of HSCR and CCHS, known as
Haddad syndrome (MIM 209880), is found in around
20% of CCHS patients (Haddad et al., 1978; Verloes et
al., 1993). In contrast with isolated HSCR, in the
majority of Haddad cases the length of colonic
aganglionosis is long or even total, and the sex ratio
male:female is around one (Croaker et al., 1998). Two
types of PHOX2B mutations are observed in CCHS: (1)
Polyalanine repeat expansion mutations (PARMs)
between 24 and 33 repeats (Weese-Mayer et al., 2003;
Repetto et al., 2009); and (2) Sequence alterations
outside of the polyalanine repeat and frameshift
mutations affecting the region encoding the polyalanine
repeat (NPARMs), which are typically small out-of-
frame deletions or duplications of approximately 1 to 38
nucleotides (Berry-Kravis et al., 2006; Weese-Mayer et
al., 2010). As one of the targets of PHOX2B is the
PHOX2B gene itself, the transcriptional activity of wild-
type and mutant proteins on the PHOX2B gene promoter
has been tested, and the transactivation ability of
proteins with polyalanine expansions has been found to
be decreased as a function of the length of the
expansion, whereas DNA binding is severely affected
only in the case of the mutant with the longest
polyalanine tract (+13 alanine) (Di Lascio et al., 2012).
Interestingly, genotype-phenotype studies have shown
that individuals with the 20/27 genotype or longer
PARMs are at greatest risk for HSCR, and almost all
individuals with NPARMs have HSCR (Trochet et al.,
2005a; Berry-Kravis et al., 2006). Most CCHS patients
are heterozygous for a de novo mutation in PHOX2B.
Nevertheless, parents of patients with molecularly
proven CCHS must be tested for accurate genetic
counselling, as about 10% carry a germline or somatic
mosaic and some parents may develop late onset CHS
(Weese-Mayer et al., 2003; Trochet et al., 2005a; Berry-
Kravis, 2006). Mutations in genes other than PHOX2B
have been identified in patients with CCHS, such as
RET, GDNF, EDN3, BDNF, HASH1, PHOX2A, GFRA1,
BMP2 or ECE1, although their significance and real
involvement in the disease is not known (Weese-Mayer
et al., 2011). However, it has been verified that the
frequent, low penetrant, predisposing allele of the RET
gene can be regarded as a risk factor for the HSCR
phenotype in CCHS (de Pontual et al., 2007a).

Interestingly, also in some cases of syndromic
neuroblastoma (NB, OMIM 256700) combined with
CCHS or HSCR, heterozygous mutations of the
PHOX2B gene have been identified while they remain
rare in sporadic, isolated NB (Rohrer et al., 2002; Mosse
et al., 2004; Trochet et al., 2004, 2005b; van Limpt et al.,
2004; Perri et al., 2005; McConville et al., 2006; de
Pontual et al., 2007b).
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PHOX2B haploinsufficiency has also been suggested
to predispose to HSCR. The c.429+100A>G SNP of the
PHOX2B gene has been found to be associated with
HSCR and, importantly, the interaction between
PHOX2B and RET HSCR-associated SNPs increases
susceptibility to HSCR (Garcia-Barceló et al., 2003a,b;
Miao et al., 2007). Taking all these data together,
PHOX2B can be regarded as an interesting candidate
gene for HSCR as well. Moreover, a recent study has led
to the identification of a de novo and novel deletion
(c.393_411del18) in a patient with HSCR and no other
sign of CCHS or NB. Results of in silico and functional
assays support its pathogenic effect related to HSCR,
supporting that PHOX2B loss-of-function is a rare cause
of HSCR phenotype (Fernández et al., 2013).

ZFHX1B

ZFHX1B encodes Smad-interacting protein-1
(SMADIP1 or SIP1), a transcriptional co-repressor
involved in the transforming growth factor-beta
signaling pathway. It is a highly evolutionarily
conserved gene, widely expressed and with key
functions in early embryological development, as
demonstrated with animal models (Papin et al., 2002;
Van de Putte et al., 2003, 2007). Mowat-Wilson
syndrome (MWS, MIM 235730) is a condition
associated with microcephaly, epilepsy, a facial gestalt
and severe mental retardation (MR). The spectrum of
possible associated malformations is wide and
encompasses hypospadias, renal anomalies, congenital
cardiac defect, agenesis/hypoplasia of the corpus
callosum and HSCR (Mowat et al., 1998; Zweier et al.,
2005; de Pontual et al., 2007a). Over 100 mutations have
been described in patients with clinically typical MWS,
who almost always have whole gene deletions or
truncating mutations (nonsense or frameshift) of
ZFHX1B, suggesting that haploinsufficiency is the basis
of MWS pathology. No obvious genotype-phenotype
correlation has been identified so far, but atypical
phenotypes have been reported with missense or splice
mutations in the ZFHX1B gene (Wakamatsu et al., 2001;
Cacheux et al., 2001; Amiel et al., 2001; Dastot-Le Moal
et al., 2007). In addition, the analysis of the distribution
of the RET intronic mutation in the context of MWS
patients revealed no association with the manifestation
of the HSCR phenotype in these patients (de Pontual et
al., 2007a).

KIAA1279

This gene has been identified as disease causing in a
large consanguineous family with Goldberg-Shprintzen
syndrome (GSS, MIM 609460), an autosomal recessive
multiple congenital anomaly syndrome that combines
HSCR, moderate MR, microcephaly, polymicrogyria,
facial dysmorphic features (hypertelorism, prominent
nose, synophrys, sparse hair), cleft palate and iris
coloboma (Goldberg and Shprintzen, 1981; Brooks et

al., 1999, 2005). Through animal model studies, it has
been proposed that such protein is an important regulator
of axonal development and that axonal cytoskeletal
defects underlie the nervous system defects in GSS
(Lyons et al., 2008). Another hypothesis is that KBP is
involved in neuronal differentiation and the central and
enteric nervous system defects seen in GSS are likely
caused by microtubule-related defects (Alves et al.,
2010). 

L1CAM

There exist some clinical presentations of HSCR
with central nervous system anomalies, including the
HSAS spectrum (Hydrocephalus due to Stenosis of the
Aqueduct of Sylvius, OMIM 307000) ascribed to
mutations in the X-linked L1CAM gene (Okamoto et al.,
2004). L1CAM encodes a neuronal cell adhesion
molecule with key functions in the development of the
nervous system. Indeed, until now L1CAM pathogenic
mutations have been found in at least 11 patients
reported to show association of X-linked hydrocephalus
(XLH) or acrocallosal syndrome (ACS) and HSCR
(Fernández et al., 2012; Takenouchi et al., 2012). It has
been hypothesized that in those cases in which XLH
presents together with HSCR, either RET or another
HSCR gene contributes to aganglionosis under the
influence of a defective L1CAM gene, and L1CAM may
act as an X linked modifier gene for the development of
HSCR (Parisi et al., 2012). Animal model studies have
shown that L1cam is required for neural crest migration,
but loss of L1cam on its own is not sufficient to produce
aganglionosis, supporting that L1cam may act only as a
modifier gene (Anderson et al., 2006). Moreover, it has
been shown that an interaction between L1cam and
Sox10 significantly perturbs neural crest migration
within the developing gut (Wallace et al., 2010). Thus,
L1cam may act as a modifier gene for Sox10, which is
one of the HSCR associated genes. In addition, L1cam
has also proven to act as a modifier gene for members of
the endothelin signalling pathway during ENS
development (Wallace et al., 2011), so that all these
genes should also be investigated in the context of XLH-
HSC (Fernández et al., 2012).
Other susceptibility loci for HSCR

Several studies have been searching for additional
susceptibility loci in HSCR. First, a linkage analysis was
performed in 12 multiplex HSCR families with three or
more affected individuals in two or more generations
where L-HSCR is largely predominant (Bolk et al.,
2000). A new locus at 9q31 was identified in conjunction
with RET and it was hypothesized that 9q31 was
probably a modifier locus for development of HSCR
disease. Recently, fine mapping of the locus firstly
revealed an association with the gene SVEP1, but this
result was not replicated in 107 independent HSCR
Dutch patients (Tang et al., 2010). However, in a
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Chinese HSCR population it was found to be associated
with the gene IKBKAP, confirmed in a different cohort
and suggesting that the association with chromosome 9
is population-specific (Tang et al., 2010). In another
study, Gabriel et al. performed a genome-wide scan in
49 families with S-HSCR. They carried out a sib-pair
analysis and found significant allele sharing with
markers on 10q11, where RET is located, 19q12 and
3p21 (Gabriel et al., 2002). To validate these data, they
checked the families’ mutation status for RET.
Surprisingly, they only identified RET CDS mutations in
40% of RET-linked families, suggesting the importance
of non-coding variants. They therefore hypothesized that
all three loci were necessary and possibly sufficient for
the observed occurrence of S-HSCR. A multiplicative
risk across loci with most affected individuals being
heterozygotes at all three loci seems to be the best
genetic model. 

A fourth locus was identified by performing a
genome-wide scan on 43 Mennonite trios, all belonging
to the same large kindred (Carrasquillo et al., 2002).
They identified three loci, two of which were known
loci: 10q11.21 where the RET gene is located and
13q22.3-q31.1 containing the EDNRB gene, previously
described as the primary susceptibility factor for the
disease phenotype in this kindred (Puffenberger et al.,
1994a). The new locus identified was located on 16q23.3
and the authors suggested two candidate genes in this
region involved in ENS development (CDH13 and
PLCG2). However, no association study have been
reported so far regarding these genes and HSCR. Later, a
linkage analysis was performed through genotyping of
4.244 SNPs in 35 HSCR Mennonite families (Lin et al.,
2004). The loci 10q11 and 13q22 were again associated
to the disease but the locus 21q21 was identified for the
first time, postulated as an interesting region given the
association between HSCR and Down Syndrome.
Finally, studying a large multi-generational Dutch family
with an isolated HSCR phenotype resulted in the
identification of a new susceptibility locus on 4q31-32
(Brooks et al., 2006). The low penetrance of the locus in
this family suggests that this mutation is necessary but
not sufficient for disease development. 

On the other hand, a pilot study utilized a custom-
designed array CGH to detect gene-sized or smaller
CNVs within 67 proven and candidate HSCR genes in
18 heterogeneous HSCR patients. Using stringent
criteria, they identified CNVs at three loci (MAPK10,
ZFHX1B, SOX2) that are novel, involve regulatory and
coding sequences of neuro-developmental genes, and
show association with HSCR in combination with other
congenital anomalies. Additional CNVs were observed
under relaxed criteria. This kind of research again
suggests a role for CNVs in HSCR and, importantly,
emphasizes the role of variation in regulatory sequences,
although much larger studies will be necessary both for
replication and for identifying the full spectrum of small
CNV effects (Jiang et al., 2011).

The way to identification of novel susceptibility

genes for HSCR is nowadays based on different
approaches such as Genome-wide associations studies
(GWAS), Genome Wide Expression Studies (GWES)
and Next Generation Sequencing (NGS).
Syndromic HSCR

HSCR presents as a syndromic form in
approximately 30% of cases, of which 18% are
associated with congenital anomalies, such as
gastrointestinal malformation, cleft palate, polydactyly,
cardiac septal defects or craniofacial anomalies, among
others (Spouge and Baird, 1985; Brooks et al., 1998)
(Summarized in Table 2). The higher rate of associated
anomalies in familial cases than in isolated cases (39%
vs 21%) supports a Mendelian inheritance for these
syndromic cases (Amiel et al., 2008; Brooks et al.,
1998). Some associations are well characterised with a
penetrance of HSCR ranging from 5% to >80%.
However, for most rare disorders it is not easy to
discriminate if HSCR is really connected to the
presentation of the disease. 

Up to 12% of HSCR cases have been described
associated with a large number chromosomal
abnormalities. Among this group of syndromic HSCR
patients, Down syndrome (DS) due to free trisomy 21 is
by far the most frequent (90%), involving 2-10% of the
ascertained HSCR cases (Bodian and Carter, 1963;
Spouge and Baird, 1985; Torfs, 1998; Brooks et al.,
1998; Jiang et al., 2011). In those cases, both the
unbalanced sex ratio (5.5–10.5:1 male:female) and the
predominance of S-HSCR are greater than in isolated
HSCR. Moreover, the risk-ratio of HSCR in DS is
known to be greater than the risk conferred by any of the
single gene mutations for HSCR (Gabriel et al., 2002).
Several hypotheses have been suggested, although they
could not be subsequently confirmed (Yamakawa et al.,
1998; Korbel et al., 2009). In addition, while RET
coding mutations have rarely been found in DS+HSCR
patients, the common HSCR predisposing RET
hypomorphic allele is over-represented in DS+HSCR
patients when compared to DS patients without HSCR (
de Pontual et al., 2007a). Moreover, an association and
interaction between RET and chromosome 21 gene
dosage has been proposed, since the RET+9.7 T allele
frequency is significantly different between individuals
with DS alone, HSCR alone, and DS+HSCR patients
(Arnold et al., 2009). Finally, although predominance of
some EDNRB variants in DS+HSCR versus HSCR
patients have been reported (Zaahl et al., 2003), those
findings could not be subsequently confirmed in other
populations (Sánchez-Mejías et al., 2010b). 
Genetic counselling

Genetic counselling remains a challenge in HSCR
because of its multifactorial etiology. Essentially, the
genetic counselor should at least be able to describe both
inherited and acquired risk factors to affected families,
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Table 2. Syndromes associated with HSCR

Syndromes MIM Key features

Syndromic NCC disorders
WS4 (Shah-Waardenburg) 277580 Pigmentary anomalies (white forelock, iris hypoplasia, patchy hypopigmentation)
Yemenite deaf-blind 601706 Hearing loss, eye anomalies (microcornea, coloboma, nystagmus), pigmentary anomalies
hypopigmentation
BADS 227010 Hearing loss, hypopigmentation of the skin and retina
Piebaldism 172800 Patchy hypopigmentation of the skin
Haddad 209880 Congenital central hypoventilation
MEN2 171400 Medullary thyroid carcinoma, pheochromocytoma, hyperplasia of the parathyroid
Riley-Day 223900 Autonomic nervous system anomalies

HSCR mandatory
Goldberg-Shprintzen 235730 MR, polymicrogyria, microcephaly, CF, coloboma, facial dysmorphic features
HD with limb anomalies 235740 Polydactyly, unilateral renal agenesis, hypertelorism, deafness

235750 Postaxial polydactyly, ventricular septal defect
235760 Hypoplasia of distal phalanges and nails, dysmorphic features
604211 Preaxial polydactyly, heart defect, laryngeal anomalies
306980 Brachydactyly type D

BRESHEK - Brain abnormalities , Retardation, Ectodermal dysplasia, Skeletal malformation, Hirschsprung disease, 

Ear/eye anomalies, Kidney dysplasia
Mowat-Wilson 235730 MR, microcephaly, epilepsy, facial gestalt, hypospadias, renal anomalies…

HSCR occasionally associated
Bardet-Biedl syndrome 209900 Pigmentary retinopathy, obesity, hypogenitalism, mild mental retardation, postaxial polydactyly
Kauffman-McKusick 236700 Hydrometrocolpos, postaxial polydactyly, congenital heart defect
Smith-Lemli-Opitz 270400 Growth retardation, microcephaly, mental retardation, hypospadias, 2–3 toes syndactyly
Cartilage-hair hypoplasia 250250 Shortlimb dwarfism, metaphyseal dysplasia immunodeficiency
HSAS/MASA 307000 Hydrocephalus, aqueductal stenosis, spasticity adducted thumbs, ACC, mental retardation

HSCR rarely associated
Fukuyama congenital 253800 Muscular dystrophy, polymicrogyria, hydrocephalus, MR, seizures
muscular dystrophy
Clayton-Smith 258840 Dysmorphic features, hypoplastic toes and nails, ichthyosis
Kaplan 304100 Agenesis of corpus callosum, adducted thumbs, ptosis, muscle weakness
Okamoto 308840 Hydrocephalus, cleft palate corpus callosum agenesia
Werner mesomelic dysplasia 188770 Hypoplasia of tibia with polydactyly
Pitt-Hopkins 610954 Epileptic encephalopathy, facial dysmorphic features, bouts of hyperventilation, dysautonomia
Jeune 208500 Severely constricted thoracic cage, short-limbed short stature, and polydactyly
Pierre Robin 261800 Glossoptosis, micrognathia, and cleft palate

Miscellaneous associations
Pallister-Hall (CAVE) 146510 Hypothalamic hamartoma, pituitary dysfunction, central polydactyly and visceral malformations
Fryns 229850 Diaphragmatic hernia, abnormal face, and distal limb anomalies
Aarskog 100050 Short stature, hypertelorism, and shawl scrotum
Fronto-nasal dysplasia 136760 True ocular hypertelorism, broadening of the nasal root, median facial cleft palate…
Osteopetrosis Various Macrocephaly, progressive deafness and blindness, hepatosplenomegaly, and severe anemia
Goldenhar 164210 Craniofacial anomalies, and eventually cardiac, vertebral, and central nervous system defects
Lesch-Nyhan 300322 Mental retardation, spastic cerebral palsy, choreoathetosis, uric acid urinary stones…
Rubinstein-Taybi 180849 Broad thumbs and great toes, characteristic facies, and mental retardation
Toriello-Carey 217980 Agenesis of corpus callosum, with facial anomalies and robin sequence 
SEMDJL 271640 Vertebral abnormalities and ligamentous laxity resulting in early death
OSCS 300373 Osteopathia striata with cranial sclerosis

Adapted from: Scriver CM et al. The metabolic and molecular bases of inherited diseases. 8th ed. McGraw-Hill, pp 6231-6255. Updated from Amiel et
al., 2008



investigate, and interpret personal and family histories to
assess HSCR-recurrence risk, as well as to discuss the
potential advantages and disadvantages of genetic
testing. They should also be able to assist in evaluating
the psychosocial aspects and to identify educational and
support resources for both patients and families.

HSCR has been assumed to be a sex modified
multifactorial disorder, the effect of genes playing a
major role as compared to environmental factors
(relative risk of 200). In these terms, the overall
recurrence risk in siblings of a HSCR proband has been
estimated at around 4%. In isolated HSCR, adequate
relative risk figures need to be provided by taking into
account the sex and length of the aganglionic segment in
the proband and the gender of the sibling (2–33%).
Therefore, a relatively precise recurrence risk tailored to
individual families could be estimated based on the
estimates provided by Badner (Badner et al., 1990).
According to Carter’s paradox, the highest recurrence
risk is for a male sibling of a female proband with L-
HSCR (Table 3). Nonetheless, the reduced penetrance of
the HSCR mutations makes it difficult to rationally
predict and assess the actual recurrence risk for HSCR.
According to poor genotype–phenotype correlation thus
far, the benefit of mutation screening for HSCR patients
appears low, except for systematic testing of mutational
hot-spots within RET proto-oncogene related to MEN2
syndrome. This, however, is not a routine practice in
most countries. 

Finally, many HSCR cases are associated with other
congenital anomalies. In these cases, the long term
prognosis is highly dependent on the severity of the
associated anomalies. Several known syndromes have
straight Mendelian inheritance. This emphasises the
importance of careful assessment by a clinician trained
in syndromology of all newborns diagnosed with HSCR.
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