Histol Histopathol (2013) 28: 1383-1392
DOI: 10.14670/HH-28.1383

http:/www.hh.um.es

Histology and
Histopathology

Cellular and Molecular Biology

Review

Expression of tricellulin in

epithelial cells and non-epithelial cells

Takashi Kojima', Takafumi Ninomiya2, Takumi Konno',

Takayuki Kohno'!, Masahiko Taniguchi' and Norimasa Sawada3
'Department of Cell Science, Research Institute of Frontier Medicine and Departments of 2Anatomy and 3Pathology, Sapporo

Medical University School of Medicine, Sapporo, Japan

Summary. Tricellulin is the first molecular component
of tricellular tight junctions at tricellular contacts where
three epithelial cells meet, and it is required for the their
formation and maintenance of the epithelial barrier.
Tricellulin binds other tight junction proteins, and its
expression and distribution are affected by the bicellular
tight junction protein occludin and lipolysis-stimulated
lipoprotein receptor (LSR) which is expressed at
tricellular contacts. Tricellulin is also detected in
endothelial cells, neurons, microglia and astrocytes.
Here, we focused tricellulin expression in various types
of epithelial cells, nasal epithelial cells, pancreatic duct
epithelial cells cells and hepatocytes, and non-epithelial
cells, dendritic cells and Schwann cells, compared to
expression of the bicellular tight junction protein
occludin and LSR, and discuss the regulation and the
role of tricellulin in cellular specificity.
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Introduction

The tricellular tight junction forms at the
convergence of bicellular tight junctions where three
epithelial cells meet in polarized epithelia, and it is
required for the maintenance of the transepithelial
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barrier (Ikenouchi et al., 2005).

Tricellulin, occludin and marvelD3 form the tight
junction-associated marvel protein (TAMP) family,
based on their sequence homology within the shared
MARVEL domain (MAL and related proteins for vesicle
trafficking and membrane link) (Raleigh et al., 2010)
and it was identified as the first marker of the tricellular
tight junction in epithelial cells (Ikenouchi et al., 2005).
Tricellulin directly binds to marvelD3 and ZO-1
(Ikenouchi et al., 2008; Raleigh et al., 2010). It has been
reported that tricellulin forms a barrier in tricellular tight
junctions effective for macromolecules and in bicellular
tight junctions for solutes of all sizes (Krug et al., 2009).
Human tricellulin mutations are associated with
nonsyndromic hearing loss (Riazuddin et al., 2006;
Chishti et al., 2008).

The C-terminus of tricellulin exhibits homology to
the C-terminus of occludin and is important for the
basolateral translocation of tricellulin (Ikenouchi et al.,
2005; Westphal et al., 2010). Knockdown of occludin
causes mislocalization of tricellulin to bicellular tight
junctions (Ikenouchi et al., 2008). Cotransfection of
tricellulin and claudin-1 changes the tight junction strand
network (Cording et al., 2013). Furthermore, it is known
that tricellulin mRNA is detected in endothelial cells,
neurons, microglia and astrocytes (Mariano et al., 2011,
2013).

More recently, lipolysis-stimulated lipoprotein
receptor (LSR) was identified as a novel molecular
constituent of tricellular contacts (Masuda et al., 2011).
LSR assembles at the corners of epithelial cells to
generate a landmark for tricellular tight junction
formation, and tricellulin is recruited to tricellular
contacts via its interaction with LSR (Masuda et al.,



1384

Tricellulin in epithelial cells and non-epithelial cells

2011). LSR has two closely related proteins encoded in
the mammalian genome, immunoglobulin-like domain-
containing receptor (ILDR) 1 and ILDR2. ILDRI is the
causative gene for familial nonsyndromic deafness and
the mediated recruitment of tricellulin is required for
hearing. (Borck et al., 2011; Higashi et al., 2013).

We focused on tricellulin expression in various types of
epithelial cells and non-epithelial cells, and compared it
to expression of the bicellular tight junction protein
occludin and LSR.

Tricellulin in human nasal mucosa

In freeze-fracture replicas, tight junction strands first
appear in regions where three cells meet in
differentiating olfactory epithelium and then they are
observed in bicellular tight junctions as well as
tricellular tight junctions (Menco, 1988). Although it is
considered to be important for the mucosal barrier of the
upper respiratory tract, little is known about the
expression and localization of tricellulin.

We investigated the expression and localization of
tricellulin in normal human nasal epithelial cells in vivo
and in vitro. Both in vivo and in vitro, mRNA and
protein of tricellulin were detected (Ohkuni et al., 2009).
It was localized not only at tricellular contacts but also at
bicellular borders, and in part colocalized with occludin
(Fig. 1A,B). Immunoelectron microscopy analysis
revealed tricellulin-associated gold particles around the
junction-like structure of the uppermost region (Fig. 1C).
In human nasal epithelial cells in vitro, treatment with
the PPARA agonist rosiglitazone induces tricellulin as
well as claudin-1 and -4 and occludin with upregulation
of the barrier function (Ogasawara et al., 2010).

On the other hand, Rescigno et al. discovered a new
mechanism for pathogen uptake in the mucosa by which
dendritic cells (DCs) open the tight junctions between
epithelial cells and send dendrites outside the epithelium
to directly sample the pathogen. DCs express tight
junction proteins such as occludin, claudin-1 and ZO-1
to preserve the integrity of the epithelial barrier
(Rescigno et al. 2001). Furthermore, activated
Langerhans cells gain access to acquisition of external
antigens by sending their dendrites out through
epidermal claudin-dependent bicellular and tricellulin-
dependent tricellular tight junctions at Langerhans cells-
keratinocyte cells contacts (Kubo et al., 2009).

We previously reported that HLA-DR- and CD11c-
positive DCs expressed claudin-1 and penetrated beyond
occludin in the epithelium of the nasal mucosa with
allergic rhinitis (Takano et al., 2005). When we
investigated the relationship between expression of
tricellulin and LSR in the epithelium of the nasal mucosa
with allergic rhinitis and CD11c-positive DCs, the DCs
penetrated beyond tricellulin and LSR, which were
expressed in the epithelium (Fig. 1D). It is possible that
DCs send dendrites outside the epithelium via tricellular
junctions to directly sample pathogens in the human
nasal mucosa.

Tricellulin in human dendritic cells

In XS52 DCs established from the epidermis of a
newborn mouse, tight junction molecules claudin-1, -3,
-4,-6,-7, -8, and occludin are detected and expression of
all these tight junction molecules is increased after
treatment with thymic stromal lymphopoietin (TSLP),
which is an IL-7-like cytokine that triggers DC-mediated
Th2-type inflammatory responses (Kamekura et al.,
2010).

Tricellulin mRNA was detected, as were occludin,
JAM-A, Z0O-1, ZO-2 and claudin-4, -7, -8, and -9 in
mature human DCs differentiated from the human
monocytic cell line THP-1 by treatment with 1L-4, GM-
CSF and TNF-a (Fig. 2) (Ogasawara et al., 2009).
However, the mechanisms of regulation of tricellulin
expression in mature human DCs remain unknown.

Regulation of tricellulin in human pancreatic duct
epithelial cells

Tricellulin is localized apically in normal pancreatic
ducts, with spotty immunopositivity at tricellular
contacts, whereas weaker signals are observed at the
junctions between two cells (Korompay et al., 2012).

In hTERT-transfected HPDE (hTERT-HPDE) cells,
which are positive for the pancreatic duct epithelial
markers CK7, CK19, and carbonic anhydrase isozyme 2,
as in normal human pancreatic duct epithelial cells,
tricellulin is detected, as are occludin, JAM-A, ZO-1,
Z0-2, claudin-1, -4, -7 and -18 (Yamaguchi et al., 2010).

To investigate the mechanisms of regulation of
tricellulin in human pancreatic duct epithelial cells, the
expression and localization of tricellulin were examined
not only in normal human pancreatic duct epithelial cells
but also in various human pancreatic cancer cell lines by
using Western blotting and immunostaining. In Western
blots of all pancreatic cancer cell lines examined,
tricellulin was detected and the expression was more
strongly observed in HPAC cells than in other cell lines
(Kojima et al., 2010). In immunostaining of HPAC cells,
tricellulin-positive spots were clearly observed at the
tricellular contacts and colocalized with occludin (Fig.
3A), whereas TRIC immunoreactivity was observed not
only at the tricellular contacts but also at the bicellular
borders in other cell lines. In HPAC cells, LSR was
strongly expressed at the tricellular contacts and was
also cololalized with occludin (Fig. 3A). In
immunoelectron microscopy, tricellulin-associated gold
particles are observed near the tricellular contacts (Fig.
30).

On the other hand, it is known that tight junction
proteins are regulated by various cytokines and growth
factors via distinct signal transduction pathways
(Gonzalez-Mariscal et al., 2008). Protein kinase C
(PKC) is a family of serine-threonine kinases known to
regulate the epithelial barrier function via tight junctions
(Balda et al., 1993; Andreeva et al., 2006). PKC
activation can readily disrupt the integrity of pancreatic
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Fig. 1. A. Double-immunohistochemical staining for tricellulin (green) and occludin (red) in human nasal mucosa. Nuclear staining: DAPI.
B. Immunocytostaining for tricellulin in human nasal epithelial cells in vitro. C. Immuno-transmission electron microscopy (I-TEM) for tricellulin in human
nasal epithelium. Arrows: tricellulin-associated gold particles. Arrows: tricellulin-associated gold particles. D. Double-immunohistochemical staining for
tricellulin (green) and CD11c (red), LSR (green) and CD11c (red) in human nasal mucosa. Nuclear staining: DAPI. Scale bars: A, D, 40 ym; B, 10 ym;
C, 250 nm.
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epithelial tight junctions by causing ROCK-II dependent
actomyosin-driven contractility or remodeling of the
spectrin-adducin based membrane skeleton (Ivanov et
al., 2009; Naydenov and Ivanov, 2010).

To investigate how tricellulin is regulated in human
pancreatic duct epithelial cells, we used various
cytokines, growth factors and signal transduction
inhibitors. We found dramatic changes of tricellulin and
the barrier function in HPAC cells induced by the c-Jun
N-terminal kinase (JNK) activators anisomycin and
TPA, and the proinflammatory cytokines IL-16, TNFo
and IL-1a (Fig. 3C) (Kojima et al., 2010). Furthermore,
the JNK inhibitor SP600125 and NF-kB inhibitor IMD-
0354 prevented tricellulin expression in HPAC cells
(Fig. 3C) (Kojima et al., 2010). In normal human
pancreatic duct epithelial cells in vitro, tricellulin
expression in response to the various stimuli was similar
to that in HPAC cells (Kojima et al., 2010).

JNK, known as stress-activated protein kinase,
belongs to the mitogen-activated protein kinase (MAPK)
group of serine threonine protein kinases and its cascade
plays an important role in cell proliferation,
differentiation and apoptosis (Davis, 2000; Karin and
Gallagher, 2005; Weston and Davis, 2007). JNK
signaling is also involved in cell scattering during
epithelial to mesenchymal transition in pancreatic
epithelial cells (Shintani et al., 2006). JNK activation is
essential for disassembly of adherens and tight junctions
in human keratinocytes and colonic epithelial cells (Lee
et al., 2009; Naydenov et al., 2009). Recently, inhibition
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of JNK activity was shown to enhance epithelial barrier
function through differential modulation of claudin
expression in murine mammary epithelial cells
(Carrozzino et al., 2009). Furthermore, some claudins
are regulated via the NF-kB pathway (Kamekura et al.,
2010; Masaki et al., 2011).

Our results suggest that JNK and NF-kB are largely
involved in the regulation of tricellular tight junctions,
including TRIC expression and the barrier function
during normal remodeling of epithelial cells, and prevent
disruption of the epithelial barrier in inflammation and
other disorders in pancreatic duct epithelial cells.

Tricellulin in mouse Schwann cells

Autotypic tight junctions are observed as tight
junction strands between adjacent cell membranes in the
inner and outer mesaxon, paranodal loops, and Schmidt-
Lanterman incisures in the peripheral myelin sheath by
freeze-fracture electron microscopy (Sandri et al. 1977,
Tetzlaff 1978, 1982). They are composed of various
transmembrane and peripheral cytoplasmic tight junction
proteins, including claudin-19 and junctional adhesion
molecule (JAM)-C (Miyamoto et al. 2005; Scheiermann
et al. 2007).

We investigated whether tricellulin was expressed in
three regions of myelinating Schwann cells: the
paranodal loops, Schmidt-Lanterman incisures, and
outer/inner mesaxons. The expression level of tricellulin
mRNA is about 10-fold higher in the sciatic nerve than

Fig. 2. A. Phase contrast and scanning electron microscopy (SEM)
for mature DCs, THP-1 cells treatment with IL-4, GM-CSF, TNF-q,
and ionomycin. B. RT-PCR for tight junction molecules in THP-1 cells.
M,100-bp ladder DNA marker. OCLN: occludin, TRIC: tricellulin,
CLDN, claudin. Scale bars: A left, 20 ym; A right, 200 nm.
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Fig. 3. A. Double-immunocytostaining for tricellulin (green) and occludin (red), LSR (green) and occludin (red) in HPAC cells. Nuclear staining: DAPI. B.
Immuno-transmission electron microscopy (I-TEM) for tricellulin in HPAC cells. TC: tricellular contact. Arrows: tricellulin-associated gold particles.
C. Western blotting for tricellulin in HPAC cells after treatment with 1 M anisomycin or 10 yM SP600125. TRIC: tricellulin. Scale bars: A, 10 ym; B, 50

nm.
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in the spinal cord or cerebrum (Kikuchi et al., 2010).
Tricellulin is strongly concentrated at the paranodal
loops, Schmidt-Lanterman incisures, and mesaxons of
the myelinating Schwann cells (Fig. 4A). There is a gap
between tricellulin and Na* channels in the thin region
of the paranode indicated by transmission electron
microscopy (Fig. 4B,C). Furthermore, tricellulin is in
part colocalized with claudin-19 and JAM-C in the three
regions of myelinating Schwann cells (Kikuchi et al.,
2010, personal data).

It is possible that tricellulin may help to maintain the
integrity for function and morphology of peripheral
nervous system (PNS) myelin, although the changes in
expression and distribution of tricellulin remain
unknown under pathophysiological conditions such as
peripheral nerve crush injury.

Tricellulin in rat and human hepatocytes

Hepatocytic tight junctions play crucial roles in the
barrier to keep bile in bile canaliculi away from the
blood circulation, which we call the blood-biliary barrier
(Kojima et al., 2003; Kojima and Sawada, 2011). The
hepatic tight junction proteins occludin, JAM-A and
claudin-1, -2, -3 are expressed in the regions of bile
canaliculi and they are also regulated by various
cytokines and growth factors via distinct signal
transduction pathways (Kojima et al., 2009a,b).

In murine livers, tricellulin is detected together with
occludin, JAM-A, CAR and claudin-1, -2, -3, -5, -7, -8,
-12, -14 and expressed in the regions of bile canaliculi
(Fig. 5) (Kojima et al., 2009a). Furthermore, LSR is also

expressed in the regions of bile canaliculi and
colocalized with tricellulin (Fig. 5). In human livers,
tricellulin is also detected together with occludin, JAM-
A,7Z0-1,70-2 and claudin-1, -2, -3, -7, -8, -12, -14 and
can be observed as a pair of spots in the regions of bile
canaliculi where tight junctions can be identified as a set
of branched intramembranous strands in freeze fracture
replicas (Fig. 5) (Kojima et al., 2009a).

Claudin-1 and occludin act as coreceptors of
hepatitis C virus (HCV) in the late stage of entry into
hepatocytes (Mee et al., 2008; Benedicto et al., 2009).
Furthermore, claudin-2 and JAM-A play crucial roles in
bile canalicular formation (Konopka et al., 2007; Son et
al., 2009). In the regions of bile canaliculi of
hepatocytes, the distribution and the role of tricellulin
may be different from those of ductal epithelial
tricellulin.

Conclusion

More recently, it has been reported that sodium
caprate, which acts as an absorption enhancer for
macromolecules by modulating the paracellular pathway,
increases permeability in tricellular contacts together
with a marked reduction of tricellulin in intestinal cells
(Krug et al., 2013). Shigella targets epithelial tricellular
junctions including tricellulin to spread between
epithelial cells (Fukumatsu et al., 2012). Tricellulin in
epithelial cells may play a crucial role not only in
prevention of the passage of various antigens and
pathogens but also in drug delivery systems.

On the other hand, in cancer, tricellulin expression is

Fig. 4. A. Immunohisto-
chemical staining for tricellulin
in mouse sciatic nerve fibers.
Paranode (black arrowheads),
mesaxon (arrows), and
Schmidt-Lanterman incisures
(white arrowheads). B.
Double-immunohistochemical
staining for tricellulin (green)
and Na-channel (red) in

= PAranode region of mouse
. sciatic nerve fibers. C.

8 Transmission electron

~ microscopy (TEM) in paranode
* region of rat sciatic nerve

& fibers. Scale bars: A, 50 ym;
B,5um;C, 1 ym.
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reduced in hepatic fibrolamellar carcinoma and tonsillar
squamous cell carcinoma comapred to normal tissues
(Kondoh et al., 2011; Patonai et al., 2011). Well-
differentiated pancreatic ductal adenocarcinomas
significantly overexpress tricellulin as compared with
poorly differentiated adenocarcinomas (Korompay et al.,
2012). Tricellulin expression in gastric carcinoma cells
is negatively regulated by snail-induced epithelial-
mesenchymal transition (EMT) (Masuda et al., 2010).
Knockdown of LSR increases cell motility and invasion
in bladder cancer cells (Herbsleb et al., 2008). Tricellulin
is closely related with the degree of cell differentiation,

although the changes of LSR are unclear in cancer cells.
Tricellular junction proteins may also be a promising
molecular target in the diagnosis and therapy for cancer
cells like claudins.

At present, the mechanisms of regulation of
tricellulin expression of DCs and the interaction between
DCs and epithelial cells at tricellular corners remain
unknown. However, it is thought that transcellular
migration of inflammatory cells in part targets tricellular
cell corners. The regulation of tricellular junctions, and
tricellulin in epithelial cells and non-epithelial cells, is
also important in innate immunity.

rat liver

tricellulin

human liver

tricellulin

TN i=F B 15T

i h ; 1" d ﬁ ! 7
o ¢ e ;l‘ LTS i
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Fig. 5. A. Double-immunohistochemical staining for tricellulin (green) and LSR (red) in rat liver. B. Immunohistochemical staining for tricellulin in human
liver. Nuclear staining: DAPI. C. Freeze-fracture replica (FF) in human liver. Scale bars: A, 40 um; B, 10 ym; C, 100 nm.
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