
Summary. Dystrophic calcification of previously
damaged areas of nervous tissue occurs in a wide range
of human diseases. The relationship between astroglial
and microglial reactions and deposits of calcium salts
was studied for up to five months in rats with a brain
lesion produced by systemic administration of kainate.
The morphology and atomic composition of the calcium
salt deposits was also studied. Two types of lesions,
sclerotic and liquefactive, were observed. In sclerotic
lesions hyperplasia and hypertrophy of astrocytes
partially substituted for the lost neurons, reaching a
maximum in about twenty-five days after treatment. In
liquefactive lesions, the astrocytic reaction occurred only
around the liquefactive area. Microglial reaction was
similar in both types of lesion and reached its highest
expression in about twenty-five days. Calcium deposits
were observed in the sclerotic but not in the liquefactive
lesions. Clearly distinguishable granules of calcium salts
were observed in sclerotic lesions under scanning
electron microscopy after only five days post-injection.
The size of calcified granules increased with time
reaching 40 µm or more in diameter at five months. The
atomic composition of these deposits, studied by X-ray
microanalysis, showed a time-dependent increase in
calcium concentration. While there was no clear
relationship between astroglial and microglial reactions
and calcium salt deposits, the systemic injection of
kainate produced progressively larger and more
concentrated calcium deposits in sclerotic, but not in
liquefactive lesions.
Key words: Kainate, Dystrophic calcification, Astroglia,
Microglia, X-ray microanalysis

Introduction

Calcifications in nervous tissue are found in a broad
range of biological processes from normal ageing
(Wisniewski et al., 1982) to a very wide variety of
different diseases. Pathological metastatic calcification
in live tissues can be caused by metabolic disorders such
as hypoparathyroidism (Vakaet et al., 1985) or Fahr’s
disease (Ang et al., 1993). In contrast, in dystrophic
calcification the minerals are deposited on areas of
previously damaged nervous tissue, as happens in
infections (Caldemeyer et al., 1997), tumours (Okuchi et
al., 1992), after radiation and chemotherapy (Fernández-
Bouzas et al., 1992), in Down’s syndrome (Becker et al.,
1991), dementias (Jellinger and Bancher, 1998),
Parkinson’s disease (Vermersch et al., 1992), Cockayne’s
syndrome (Ozdirim et al., 1996), epilepsy (Arnold and
Kreel, 1991), cerebral hypoxia (Ansari et al., 1990;
Rodriguez et al., 2001), infarction (Parisi et al., 1988),
trauma (Cervós-Navarro and Lafuente, 1991),
schizophrenia (Bersani et al., 1999), lupus
erythematosus (Matsumoto et al., 1998) and congenital
diseases (Kobari et al., 1997).

Experimentally-induced calcification in laboratory
animals has been observed in spinal cord trauma
(Balentine and Spector, 1977) and cerebral ischemia
(Kato et al., 1995). Also, after intracerebral injection of
different excitotoxins calcium deposits have been found
in several areas such as substantia nigra (Nitsch and
Scotti, 1992), basal ganglia (Mahy et al., 1995; Saura et
al., 1995; Stewart et al., 1995), amygdaloid complex and
thalamic nuclei (Saura et al., 1995). The pathogenesis of
dystrophic calcification in nervous tissue is not fully
understood but it is generally accepted that cellular
necrosis or apoptosis may be the bases for calcium
deposition (Kim, 1995). Non-atherosclerotic
calcification in the brain has also been related to the glial
reaction and to intracellular increase of calcium. After
cerebral lesion, a local increase in the number of
microglial and astroglial cells has been observed. The
microglial cells increase from the first day to one week
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after lesion (Acarin et al., 1999a) whereas the increase in
astroglial cells occurred over a longer period, with a
maximum in the first week (Acarin et al., 1999b) and
remaining for several months with the consequent scar
formation (Dusart et al., 1991). Astroglial and microglial
reactions have been associated with the formation of
calcium deposits (Saura et al., 1995; Herrmann et al.,
1998). 

The intracellular increase in calcium is considered
one of the main events in neuronal death caused by
excitotoxicity (Whetsell, 1996). This increase in calcium
is caused by its entry from the extracellular compartment
and also by its liberation from intracellular reservoirs
leading to neuronal apoptosis and necrosis (Martin et al.,
1998) through several pathogenic pathways. It has also
been proposed that a high level of intracellular calcium
and phosphate in apoptotic or necrotic cells is apparently
the primary mechanism of calcification (Kim, 1995).

Kainate is a powerful glutamic acid agonist and has
been used as an excitotoxin to produce brain lesions in
studies of cerebral functions and in models of human
central nervous system diseases (Bhatnagar et al., 1999;
Bouilleret et al., 1999; Magnuson et al., 1999).

Intracerebral injection of kainate causes local
destruction of nervous tissue (Dusart et al., 1992)
whereas intracerebro-ventricular and systemic
administrations are thought to affect areas with an
important glutamatergic innervation (Franck and
Roberts, 1990). The systemic administration of kainate
to adult rats produces in the first hours a complex of
motor symptoms denominated limbic seizures (Sperk et
al., 1983), which has been considered as a model of
human limbic seizures. The cerebral lesions observed in
rats systemically treated with kainate are not uniform
since in some areas they consist of neuronal loss and
substitution by neuroglial cells whereas in other areas
necrosis and blood vessel proliferation have been
observed (Gayoso et al., 1994). In the present study we
describe the calcification of brain lesions caused by
intraperitoneal injection of kainic acid from two days to
five months of survival time. The distribution,
morphology and atomic composition of these calcium
deposits as well as their relation with astroglial and
microglial reactions are also described.
Materials and methods

Seven groups of 4 to 10, locally bred male adult
Wistar rats were housed under standard conditions
(12/12 h light/dark cycle) with free access to food and
water. Care and manipulation of the animals followed
the guidelines of the European Communities Council
(86/609/EEC) for laboratory animal care and
experimentation. Some of these animals were also used
for other histological and behavioural studies. One
group, which was intraperitoneally-injected with saline
solution, was the control group. The remaining 6 groups
of rats were intraperitoneally-injected with a single dose
of 10 or 12 mg/kg of kainate. The kainate solution
(0.5%) was prepared by dissolving 50 mg of kainate in

3.3 ml of NaOH and then adding 6.7 ml of 0.1M buffer
phosphate pH 7.4. After a survival time of 2, 5, 10, 25,
50 or 150 days respectively the animals were
anaesthetised with a mixture of 50 mg/kg of ketamine
(Ketolar®Parke-Davis) and 5 mg/kg of xilacine
(Rompun‚ Bayer AG) and transcardially perfused with
buffered saline for two minutes and 4%
paraformaldehyde in phosphate buffer (0.1M, pH 7.4)
for 20 minutes. The brains were cryoprotected in 30%
sucrose solution, frozen in dry ice and sliced in a sliding
microtome at 40 µm in eight consecutive series. These
series were kept frozen in 30% sucrose in phosphate
buffer until staining. In each animal we studied at least
one series with each of the following staining methods.

Cresyl violet (1% in bicarbonate buffer 0.1M, pH
3.6) was used as general staining. To assess the neuronal
degeneration, Nadler’s modification (Nadler et al., 1978)
of Gallyas’ method was used. Before starting the silver
impregnation, the frozen sections were thawed and
maintained in a 4% buffered paraformaldehyde solution
for 24 h. Astroglial reaction was studied by
immunohistochemical detection of glial fibrillary acidic
protein (GFAP). After endogenous peroxidase blocking
with 2% hydrogen peroxide in absolute methanol, free
floating brain sections were incubated overnight with
polyclonal anti-GFAP antibodies (Sigma G 9269), and
then revealed with the standard methods using a
biotinylated goat anti-rabbit IgG and a horseradish
peroxidase-avidin-biotin complex (Vectastain ABC kit,
Vector) with DAB as chromogen. Microglial reaction
was assessed by the binding of tomato lectin (Acarin et
al., 1999a) with biotinylated tomato lectin (Sigma
L0651). After endogenous peroxidase blocking free
floating brain sections were rinsed two times in 0.1M
phosphate-buffered saline (PBS), kept ten minutes in 1%
Triton X in PBS, incubated overnight in 20 µg/ml
biotinylated lectin and revealed by ABC standard
techniques. Histochemical staining with Alizarin red S
(1% in 0.1% v/v of concentrate ammonium hydroxide,
pH 6.4) was applied for calcium detection (Dahl, 1952).
After Alizarin red S staining, the slides were air dried,
cleared in xylene and coverslipped with Eukitt. Avoiding
alcohol dehydration allows staining of lesioned areas in
addition to the calcium deposits, whereas dehydration
leads to a differentiation which leaves only the calcium
deposits stained. After light microscopic study, selected
areas of the non-stained series were mounted on carbon-
coated glass slides and studied in a JEOL JM-6400
scanning electron microscope (SEM) using
backscattered and secondary-electron images. The
chemical composition of the selected areas was
determined by energy dispersive X-ray (EDX) analysis
with an electron probe micro analyzer JEOL JXA 8900
M. Student’s t-test was used for data comparison and the
difference was considered significant if P< 0.05.
Results

The general pattern of pathological changes in the
affected brain regions was similar in lesioned animals
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but the degree of damage was dependent on the survival
time. However, there were important individual
variations, since not all the injected animals showed
lesioned brains. For instance, we found 5 lesioned out of
11 injected animals in the 25-day group (10 mg/kg of
kainate), 7/10 in the 50-day group (10 mg/kg of kainate)
and 6/11 in the 150-day group (12 mg/kg of kainate).
Two types of histological lesions that we denominate
sclerotic and liquefactive were found. The sclerotic type
of lesions was characterized by selective focal
degeneration and death of neurons in several brain
regions and hyperplasia and hypertrophy of astrocytes.
At the final stage studied (150 days) a glial scar was
observed. This type of lesion was found mainly in
olfactory bulb, anterior olfactory nucleus, Cornu
Ammonis (CA) of the hippocampal formation and
midline, mediodorsal and lateral thalamic nuclear groups
(Fig. 1). The one denominated as a liquefactive type of
lesion was characterized by non-selective neuronal death
over a large area with necrosis of liquefactive type and
astrocytic reaction only around the necrotic area. This
lesion showed the histological characteristics of the
hypoxic liquefactive necrosis. Liquefactive type of
lesion prevailed in the basolateral region of the brain, in
the pyriform and entorhinal cortex, and adjacent nuclei
of the amydaloid complex (Fig. 1). However, adjacent to
the liquefactive areas groups of neurons could be
selectively affected by the sclerotic type of lesion.

Two days after kainate administration, lesions are
not completely developed. The sclerotic lesions stained
with cresyl violet showed shrunk neuronal bodies and
nuclei, whereas in the liquefactive lesions there was
rarefaction of the neuropil with a moth-eaten aspect in
addition to shrunk neurons with kariolysis and

kariorrhexis. The number of glial cells, easily
distinguished by their smaller size, was only slightly
larger than in control animals. Nadler ’s silver
impregnation differentially stained sclerotic and
liquefactive brain lesions. In the sclerotic lesions,
degenerated neurons were darkly stained and fine
granulated silver deposits labelled the degenerated axon
terminals. The liquefactive type of lesion at this time
showed a gray staining caused by very small silver
granules. The degenerated neurons in these liquefactive
areas were not heavily silver impregnated as they were
in the sclerotic type of lesions. In the sclerotic lesions
the GFAP-immunoreactive astrocytes showed numerous
strongly positive processes. In the liquefactive areas the
GFAP-IR was not increased. The tomato lectin binding
showed an increase in the labelled microglial cells in
both the sclerotic and the liquefactive type of lesions.
This increase in lectin binding was caused by the
increase in the individual cell binding and by a slight
increase in the number of labelled cells. In addition to
lesioned zones, some microglial labelled cells were also
observed in the neighbouring areas. With Alizarin red S,
both the sclerotic and the necrotic type of lesions
showed weak staining with few and scattered stained
neurons. The EDX analysis of lesioned areas did not
show any detectable calcium content, their atomic
composition being similar to the non-lesioned ones.

Five days after excitotoxin injection, lesions were
clearly established showing outstanding histological
differences with control animals (Fig. 2A,B). The
number of glial cells in both sclerotic and liquefactive
lesions increased. In the sclerotic lesions it was possible
to differentiate some large oval glial nuclei with cresyl
violet staining from others that were smaller and more
elongated (Fig. 2B). The smaller, slenderer nuclei and
cell bodies may correspond to migrating microglia and
the others to astrocytes and other types of microglial
cells. In the liquefactive lesions a larger proportion of
elongated nuclei was seen. Nadler’s method stained the
degenerated neurons and terminals in the sclerotic
lesions (Fig. 4A) more clearly (darker impregnation)
than after two days. In the liquefactive lesions a diffuse
brown precipitate with some stained degenerated
neurons and terminals was seen with Nadler’s silver
impregnation (Fig. 4D). The GFAP-IR increased in the
areas with sclerotic type of lesions and also around the
liquefactive areas. The GFAP-IR increased not only in
the lesioned areas but also in the adjacent ones. For
instance, in animals with lesions located in CA1 the
GFAP-IR was increased over the whole Cornu
Ammonis. In contrast, the increase in glial cell number
was circumscribed to the areas of neuronal destruction.
Tomato lectin binding heavily stained microglial cells in
lesioned areas of both sclerotic and liquefactive types.
The morphology of the positive lectin cells was varied,
some relatively large, round cells with short processes
and others slender with longer, ramified processes.
Alizarin red S stained the areas with sclerotic lesions
highlighting those of the hippocampal formation (CA1
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Fig. 1. Coronal
brain sections
of lesioned rats
10 days (A) and
25 days (B)
after kainate
administration.
Alizarin red S
stain. Large
arrows:
Liquefactive
type of lesion in
the basolateral
region of the
brain (A and
B). Small
arrows:
Sclerotic type of
lesion in
thalamus (A)
and in thalamus
and
hippocampal
formation (B).
Scale bar: 
1 mm.



and CA3) and thalamus. In addition to heavily stained
neuronal bodies, we observed fine red-orange granules
that were more evident in the thalamic nuclei. The
liquefactive areas appeared pale pink stained with
Alizarin red S with some stained neuronal bodies. Under
SEM it was possible to distinguish, more easily using

backscattered SEM, small calcified granules of about 0.6
µm in diameter in some of the sclerotic lesions and more
frequently in the thalamic nuclei (Fig. 8A). EDX
analysis of these small granules showed, in addition to
the O, Na, P, S, and K peaks, the calcium peaks, (Fig.
9A). The Ca/P ratio calculated in atomic percent was
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Fig. 2. Time-course of sclerotic type of brain lesion in CA1 caused by systemic injection of kainate. A: control. B: 5 days. C: 10 days. D: 25 days. E: 50
days. F: 150 days. All the photographs show only the stratum oriens (SO), stratum pyramidale (SP) and stratum radiatum (SR) of CA1. Cresyl violet
stain. Scale bar: 100 µm.



0.25± 0.02 (mean ± standard error).
Ten days after kainate administration, the loss of

neurons and their substitution by glial cells was easily
distinguished with cresyl violet staining in both sclerotic
(Fig. 2C) and liquefactive (Fig. 3A,B) lesions. The
lesioned areas showed shrinkage more easily observable
in highly organized areas like CA1 (Fig. 2C). The
number of glial cells seemed to be increased in relation
to the days before. Nadler’s method clearly stained the
degenerated neurons in the sclerotic-type lesion whereas

in the liquefactive areas degenerated neurons were not
specifically stained and the whole liquefactive area
showed the characteristic brown homogeneous
precipitate, with some reticular fiber-like staining of
blood vessel walls. The degenerated axon terminals were
more intensely labelled than days before. GFAP-IR
continued to increase in the sclerotic-type lesioned areas
(Fig. 5C) and also around the liquefactive ones but not in
the central zone of the liquefactive necrosis (Fig. 5D).
The increase in GFAP-IR was also observed in the
adjacent regions. At this time, the immunoreactive
astrocytes showed a more abundant cytoplasm and
shorter processes except around the liquefactive areas
where thick astrocytic processes constituted a sort of
palisade (Fig. 5D). Lectin binding showed an increase in
microglial-positive cells in both types of lesions (Fig. 6
A,C,E). In sclerotic lesions, Alizarin red S stained, in
addition to some degenerated neurons, numerous small
extracellular grains of about 1 µm in diameter were seen
(Fig. 7A) whereas the liquefactive lesioned areas were
faintly and evenly stained with some degenerated stained
neurons but without any positive granules. In the
sclerotic areas the SEM showed small granules of 0.64
to 1.2 µm in diameter (Fig. 8B) whereas in the
liquefactive areas we did not find any granules.
Backscattered electron images of these granules were
clearly contrasted due to the high atomic number of
calcium. EDX analysis of these granules showed a
pattern similar to that of the 5-day group but with higher
calcium and smaller phosphorus peaks. The Ca/P ratio
was 0.44±0.05 (Fig. 10). The differences in the Ca/P
ratio with the five-day group were statistically
significant (P=0.037).

At 25 days the shrinking of lesioned areas was
similar to that of the ten-day group but the number of
glial cells seemed to increase somewhat (Fig. 2 D). With
Nadler’s method the impregnation of degenerated
neurons and terminals was similar to the former group.
The morphology of the GFAP-immunoreactive cells in
the sclerotic areas was different, showing larger and
positive cell bodies and less numerous, shorter
processes. Around the liquefactive lesions the astrocytic
palisade was more evident than before and was
constituted by thicker and strongly immunoreactive
processes. The binding of tomato lectin in all the
lesioned areas was more intense than in preceding
groups of animals. Alizarin red S showed more intense
staining than before with a larger number of small
stained granules only in the sclerotic areas (Fig. 7B). In
these areas the SEM showed a large number of small
granules of 1 µm or more in diameter (Fig. 8C). Larger
granules that seemed to be made up by the growth and
confluence of smaller ones were also found. X-ray
microanalysis of these granules showed an increase in
calcium content and a decrease in that of phosphorus
(Fig. 9B) with regard to the previous group of animals.
The Ca/P ratio was 1.17± 0.21 (Fig. 10) with statistically
significant differences with the 10-day group (P=0.009).

The group with 50 days of survival after treatment
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Fig. 3. Liquefactive type of lesion in the basolateral region of the brain
10 days (B) and 50 days (C) after kainate administration. A: control
animal. Cresyl violet stain. Scale bar: 500 µm.



showed important differences regarding the 25-day
group in the histological structure of lesions. After 50
days, the number of glial cells in the lesioned areas had
clearly diminished (Fig. 2E). The volume of both
sclerotic (Fig. 2E) and liquefactive (Fig. 3C) types of
lesions decreased. In an area easy to measure, such as
CA1, the thickness in coronal sections, measured from
stratum oriens to stratum lacunosum-moleculare, was
about 670 µm in non-lesioned animals, similar to 2 and 5
days after lesion, but after 10 and 25 days its thickness
decreased to about 570 µm and it was about 470 µm
after 50 days. Nadler’s method heavily stained all
lesioned areas with very intense labelling of neurons and
terminals in the sclerotic areas (Fig. 4B) and some
reticular fiber-like staining around blood vessels in the
liquefactive lesions (Fig. 4C). The astrocytes in the
sclerotic areas had large, irregular GFAP-IR cell bodies
with less evident processes (Fig. 5E) whereas around the
liquefactive lesions the astrocytic palisade appeared
thicker and strongly immunoreactive (Fig. 5F). The
binding of tomato lectin was usually more intense than
days before in liquefactive lesions (Fig. 6B) but was less
intense in sclerotic ones (Fig. 6D,F). Alizarin red S-
stained granules were at this time larger and more
heavily stained than those of the previous groups and
were found in the sclerotic (Fig. 7C) but not in the

liquefactive areas. These granules under SEM showed a
high variability, from small and individual granules of
about 1.5 µm to aggregates of 10 µm or more in
diameter (Fig. 8D). However, the proportion of calcium
and phosphorus remained similar to that in the 25-day
group. The Ca/P ratio was 1.13±0.04 (Fig. 10), the
difference with the preceding group not being
statistically significant.

At 150 days after treatment, the number of glial cells
in the sclerotic and liquefactive types of lesion was
fewer than after 50 days and the volume of the lesioned
areas was smaller than before (Fig. 2F). For example,
CA1 now measured about 350 µm in thickness
(approximately 50% of the control), the most sensitive
layers being stratum oriens, stratum pyramidale and
stratum radiatum (Fig. 2). In the sclerotic area Nadler’s
stain labelled weakly the more scarce debris of
degenerated neuronal bodies and axons as well as the
remaining reactive astrocytes. In the liquefactive areas
Nadler’s stain showed their characteristic faint, non-
specific labelling and some reticular fiber-like-stain in
the blood vessel walls. GFAP-IR was less positive than
at day 50 post-treatment although it remained increased
as compared to the control group in the sclerotic zones
and around the liquefactive areas. We did not observe
any special arrangement of the reactive astrocytes in
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Fig. 4.
Nadler’s
impregnation
of sclerotic (A
and B) and
liquefactive (C
and D) type of
brain lesion 5
days (A and
C) and 50
days (B and
D) after
kainate
adminsitration.
Scale bar:
A,B, 100 µm;
C,D, 200 µm. 



relation to the calcification granules. The binding of
tomato lectin could still be observed but to a less intense
degree than at 50 days after kainate administration.
Alizarin red S-positive granules were larger and more
abundant (Fig. 7D) than after shorter survival times.
These granules showed different sizes reaching more
than 40 µm in lesioned thalamic nuclei. The SEM
showed some of these granules to have an irregular
shape that seemed to be formed by the confluence of

smaller ones (Fig. 8E). Some of the larger granules had
an oval shape and a more even surface than the smaller
ones (Fig. 8F). With regard to the previous group, EDX
analysis of these granules showed an increase in calcium
and a decrease in phosphorus content (Fig. 9D). The
Ca/P ratio was 1.33±0.14 (Fig. 10). The difference with
the 50- and 25-day groups was not statistically
significant. In bone prepared in a similar way to the
brain sections the Ca/P ratio was 2.18±0.09, significantly
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Fig. 5. GFAP-immunostaining of CA1 (A, C and E) and basolateral region of the brain (B, D and F) of control (A and B) and after 10 days (C and D)
and 50 days (E and F) of kainate administration. Scale bar : 100 µm (A, C and E) and 200 µm (B, D and F).



higher than in all the calcified lesions observed.
Discussion

The pattern of brain lesions observed in our
experiments is similar to that previously described after
systemic administration of kainate (Schwob et al., 1980;
Sperk, et al., 1983, 1985; Sperk, 1994) but we consider

that the two types of lesions that we denominate
sclerotic and liquefactive lesions may be produced by
different pathogenic mechanisms and have different
evolution in relation to the deposit of calcium salts. Our
two lesion types refer to the type of histological change
and do not correspond to mechanisms of cell death such
as necrosis, apoptosis or any intermediate form between
them (Martin et al., 1998).
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Fig. 6. Tomato lectin binding in CA1 (A and B) and basolateral region of the brain (C, D, E and F) 10 days (A, C and E) and 50 days (B, D and F) after
kainate administration. E and F are details of the C and D figures respectively. Scale bar = 100 µm.



The sclerotic type of lesion may be caused by
kainate acting as a neurotransmitter by directly or
indirectly promoting the selective death of specific
groups of neurons followed by the proliferation of
astrocytes and microglial cells. In contrast, the second
type of lesion is similar to that classically described as
liquefactive necrosis and also to that described by
DeGirolami et al. (1984) as total necrosis, with
destruction of both gray and white matter, an inner zone
of liquefaction and sharp margins containing astrocytes
and mononuclear cells. This type of lesion could be
caused by kainate administration which would produce a
generalized brain edema (Sperk et al., 1983) originating
compression and hypoxia in the basal region of the
brain. The massive swelling of astrocytes (Lassmann et
al., 1984) and cytotoxic brain edema (Seitelberger et al.,
1990) observed after systemic injection of kainate can
also contribute to this lesion.

The cellular mechanism through which kainate
produces neuronal destruction is not well understood yet.
The excitotoxic action of kainate is performed, in the
first place, on neurons bearing mainly kainate receptors.
Kainate, in a large enough dosage, may cause an
apoptotic type of neuronal death upon this type of

neuron similar but not identical to the physiological
apoptosis observed during central nervous system
development (Martin, et al., 1998). In contrast, the
hyperstimulation of N-methyl-D-aspartate (NMDA)
receptors would cause a necrosis type of neuronal death
in neurons with predominance of this type of receptor. In
our experiments, the neuronal death caused by the
systemic injection of kainate is histologically more
similar to necrosis than to apoptosis, which is in
agreement with previous studies in which the
intraperitoneal injection of kainate in adult rats produced
neuronal death with morphology mainly similar to
necrosis and with a small number of apoptotic-like cells
(Ferrer et al., 1997). However, it has been described that
some of these neurons with morphological signs of
necrosis are stained with the terminal deoxynucleotidyl
transferase dUTP nick-end labeling (TUNEL) technique
and yield biochemical evidence of ladder fragmentation
of DNA (Fujikawa et al., 2000). These data,
contradictory in appearance, would support the
hypothesis that the neuronal death caused by
excitotoxins may take place in a continuum between
apoptosis and necrosis similar to apoptosis when the
excitotoxin acts on non-NMDA receptors and more
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Fig. 7. Alizarin red S staining of the basal thalamus around the reuniens nucleus at 10 (A), 25 (B), 50 (C) and 150 days (D) after kainate administration.
Note the increasing size of calcium salt deposits. Scale bar : 50 µm.



similar to necrosis after stimulation of NMDA receptors
(Portera-Cailliau et al., 1997; Martin, et al., 1998). Our
results indicate that systemic injection of kainate is the
cause of selective loss of neurons predominantly bearing
NMDA receptors. For instance, in the hippocampal
formation we observed neuronal death predominantly of
necrosis type in CA1 whose neurons have receptors of
NMDA type, whereas in CA3 and CA4, where kainate
receptors are the most abundant (Cotman et al., 1987),

the lesioned neurons were less numerous. A possible
explanation of these results could be that kainate, acting
on its specific receptors on CA3 and CA4 pyramidal
neurons, causes the death of these neurons or, since these
neurons are glutamatergic, the axonal release of
glutamate. Glutamate would then act upon CA1
pyramidal neurons indirectly causing the cellular death
with a morphology similar to necrosis. A similar
mechanism has been proposed to interpret the epileptic
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Fig. 8. Backscattered scanning electron micrographs of the deposits of calcium salts in the sclerotic type of lesions 5 (A), 10 (B), 25 (C), 50 (D) and 150
days (E and F) after kainate administration. At the final stage large aggregates and also very large rounded granules are observed. Scale bar: 10 µm.



crisis and the subsequent lesions produced by systemic
administration of kainate (Fujikawa et al., 2000) and also
to explain the discrepancy between neuronal death
caused by excitotoxins and the distribution of
glutamatergic receptor in the amygdaloid complex
(Tuunanen et al., 1999). In this study the authors
observed that the distribution of neuronal damage in the
amygdaloid nuclei differs from the distribution of
kainate receptors.

The neuronal death caused by ischemia seems to be
of the necrotic type (Martin et al., 1998) although
morphological and biochemical characteristics of
necrosis as well as of apoptosis have been described in
ischemic neuronal death, with variations depending on
severity and instauration rate of the ischemia (Benchoua
et al., 2001). 

The increasing of GFAP-IR that we observed in the
first days post-lesion could be due to alterations in
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Fig. 9. Chemical
composition of
salt deposits
determined by
energy dispersive
X-ray analysis 5
(A), 25 (B), 50 (C)
and 150 days (D)
after kainate
administration.
Note the increase
in calcium
concentration.



cytoskeleton proteins produced by the post-injury
swelling and the exposition of antigenic sites after
depolymerization of GFAP filaments (Dusart et al.,
1991).

In a study with a similar administration of kainate,
Gramsbergen and van den Berg (1994) found an increase
of GFAP in all the studied areas. This GFAP increase
reached the highest value about 28 days after treatment,
remaining high up to 6 months, the longest period
studied. Our results are in agreement with these
observations since we observed the highest GFAP-IR on
day 25, and it remained high up to 150 days. However,
we found some discrepancies with the results of
Gramsbergen and van den Berg (1994) since they found
the highest GFAP increase in pyriform cortex and
amygdaloid complex where we found liquefactive
necrosis with only a surrounding area of hypertrophic
astrocytes.

In our experiments the microglial reaction was
similar in both sclerotic and liquefactive types of lesions.
An increase in microglial-like reactive cells was seen in
the lesioned areas from 2 days onwards reaching a
maximum in lectin binding between 25 and 50 days and
remaining visible at 5 months. In the first days after
lesion we were not able to determine if the increased
number of lectin-positive cells was produced by
migration from neighbouring areas, by cellular division
of resident microglial cells or by both mechanisms. The
activation of microglial cells by kainate or hypoxia
seems to be a very fast phenomenon that can be
observed in vitro after twenty minutes (Abraham et al.,
2001). In brain lesions without blood vessel breaking
such as intraventricular injection of kainate, one of the
earlier events is the enlarged microglial cell processes
(Streit et al., 1999) and migration of microglial cells

from surrounding areas (Akiyama et al., 1994). Also,
proliferation of resident microglia has been shown after
intracerebral injection of kainate (Marty et al., 1991) and
at the periphery of human cerebral infarction up to day 3
post-infarction (Postler et al., 1997). Probably, both
mechanisms are involved in this microglial reaction in
the first days after lesion with subsequent participation
of leukocytes migrating from blood vessels (Marty,
1991; Akiyama et al., 1994). After intracerebral
injection, the microglial reaction shows a clear
diminution at 30 days, therefore decreasing faster than in
our experiments (Marty et al., 1991; Streit et al., 1999).
Also, after deafferentation of vestibular and cochlear
nuclei the microglial reaction reached a maximum at 8-
14 day and lasted for 42 days (Campos Torres et al.,
1999). We found a decrease in lectin labelling after 50
days lasting to the end of our observations. These
differences could be due in part to the different methods
used to stain the microglial cells, and also because the
lesions caused by systemic kainate could recruit less
phagocytic cells from blood vessels; thus microglial
cells will remain for a larger time to remove the cellular
debris.

The Alizarin red S staining without alcohol
differentiation reveals not only the calcium salt deposits
but also the sclerotic type of lesioned areas without
calcification. This method could stain areas with specific
ionic composition, possibly accumulation of calcium
ions, since the pictures obteined with Alizarin red S are
very similar to the 45Ca autoradiograms obtained after
systemic kainate injection (Gramsbergen and van den
Berg, 1994).

It is possible that in the sclerotic type of lesion
calcium concentration was increased but we found
deposits of calcium salts only in some of these areas.
Selective calcification has been described after
intracerebral injection of excitotoxin because some areas
such as substantia nigra and globus pallidus developed
calcification whereas the striatum and septum did not
(Nitsch and Schaefer, 1990; Nitsch and Scotti, 1992;
Mahy et al., 1995). We did not find Alizarin red S
staining or calcium salt deposits in the liquefactive type
of lesions perhaps because in these areas cellular death is
produced too suddenly. Also, after intracerebral
injections of excitotoxin the calcification does not occur
in the injection site but in areas some distance apart
(Nitsch and Schaefer, 1990).

The injection of excitotoxins causes an increase in
the intracellular calcium (Nitsch and Scotti, 1992; Bernal
et al., 2000) which may be responsible for most
destructive processes in the cells (Trump et al., 1992;
Kim, 1995). Also in cellular apoptosis the decrease in
ATP synthesis increases intracellular phosphate and
these increases of calcium and phosphate may produce
intracellular deposits of calcium phosphate. These
mechanisms could explain the calcification of neurons
such as proposed by Mahy et al. (1995). In our
experiments we observed some scattered Alizarin red S-
stained neurons in the lesioned areas but the deposits of
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Fig. 10. Time-course of the calcium/phosphorus proportion in the
deposits of calcium salts in the sclerotic lesion caused by kainate
administration. Mean ± SE (*P<0.05).



compatible with calcium phosphate in the form of
hydroxyapatite (Mahy et al., 1999). We have observed a
gradual increase in Ca/P proportion, but it never reached
values comparable with those observed in bone. Lower
Ca/P ratio seems to correspond with a less organized,
porous apatitic small crystals as described in other
pathological calcifications (Poggy et al., 2001).
Nevertheless, information concerning the mineral
composition of dystrophic calcification is too limited to
allow us to establish firm conclusions on this topic. 

In conclusion, the systemic injection of kainate
produces calcium phosphate deposits in sclerotic but not
in liquefactive type of lesions with a progressive
increase in size and in calcium concentration. 
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