Invited Review

What is the value of proliferation markers in the normal and neoplastic cervix?

M.K. Heatley
Department of Cellular Pathology, Taunton and Somerset NHS Trust, Musgrove Park Hospital, Taunton, Somerset, United Kingdom

Summary. Markers of cellular proliferation have been widely applied in cervical disease and include techniques which are applicable to routinely processed tissue including standard hematoxylin and eosin sections, and sections labelled with antibodies to Ki-67 and PCNA proteins. Flow cytometry and in vivo techniques including labelling with Bromodeoxyuridine (BrdU) and radiolabelled thymidine require more specialized facilities. Increases in the mitotic index and the Ki-67 and PCNA labelling indices, the incidence of aneuploidy together with increases in in vivo labelling with BrdU and radiolabelled thymidine have been demonstrated as the grade of cervical intraepithelial neoplasia (CIN) increases. With respect to invasive tumours increases in these parameters are associated with increased tumour size, stage and improved survival after radiotherapy.

At present the major practical application of these markers appears to be in distinguishing between post-menopausal atrophy and CIN lesions on histological sections and, in combination with the Papnet system, in identifying high grade dyskaryosis on blood stained cervical smears. Future development may permit the identification of those patients whose CIN lesion will progress, and who require treatment, to be distinguished from those whose lesions will stay static or regress and who can be followed up cytologically. This promises a more rational use of health care resources.

Most of the studies to date have been on small numbers of cases. Meta-analysis of existing studies and large, possibly multicentric, prospective studies are needed to elucidate the value of these markers.

Key words: Cervix, Cervix neoplasms, Cervical intraepithelial neoplasia, Cell division, Flow cytometry, Nuclear proteins, Nucleolus organizer region

Introduction

A number of recent studies which assess the proliferative state in the human cervix have become available. Proliferation in the normal cervix, in cervical intraepithelial neoplasia and in invasive cervical carcinomas can be assessed by a range of techniques requiring technologies of varying sophistication and accessibility. These techniques can be considered in four broad groups:

1) methods which can be applied to routinely processed histological sections and cytological smears often requiring no additional technical input, for example, mitotic counts;
2) dynamic, biological techniques in which a marker compound, such as tritiated thymidine, is either injected locally into the cervix in vivo or in which fresh tissue is incubated with the marker in vitro;
3) techniques which use widely available immunoperoxidase and histochemical techniques and which can be easily performed using the facilities available in a typical diagnostic laboratory, for example, Ki-67 labelling index and AgNOR counts;
4) techniques requiring specialised equipment which is usually available only in research facilities and hospitals associated with university departments but which do not usually require special tissue handling, for example, flow cytometry.

Techniques based on routine preparations

In the normal cervix mitotic activity is usually confined to the basal and parabasal layers. With increasing histological grade of cervical intraepithelial neoplasia (CIN) the numbers and height of mitotic figures within the epithelium increases. Significant differences in the mitotic index in different grades of CIN have been described, perhaps reflecting variation in the speed of the cell cycle (Kobayashi et al., 1994). CIN lesions demonstrating aberrant mitoses are more likely to be associated with human papilloma virus type 16...
(HPV 16) (Burger et al., 1997), a type of HPV particularly correlated with invasive and high grade intraepithelial lesions (Lorinz et al., 1992) and to exhibit DNA aneuploidy, a characteristic associated with the progression of low grade CIN to high grade lesions and of high grade CIN to invasive malignancy (Bibbo et al., 1989). Particular prognostic importance has been attributed to the presence of three group mitotic figures (Pieters et al., 1992). Morphological atypia and increasing mitotic rates are also associated with increased proliferation rates as assessed using the PCNA labelling index (Kobayashi et al., 1994; Steinbeck et al., 1995).

The availability of a mitosis specific antibody, which in combination with image analysis techniques can be used to study the frequency and distribution of mitotic figures in cervical epithelium will facilitate the study of these theoretical matters and assist in evaluating their practical applications (Hu et al., 1995).

**Biological markers of proliferation**

Autoradiography of tissue sections incubated in tritiated thymidine and the use of bromodeoxyuridine (BrdU) a pyrimidine analogue are sophisticated techniques. Special facilities, to accommodate living patients to whom radiolabelled thymidine or the oxygen sensitiser BrdU have been administered or to culture tissue biopsies in these compounds immediately after they are obtained from the patient, are required. These methods have not found a wide application since the need for such specialized facilities adds to their complexity and limits their routine use. Nevertheless they have contributed to our understanding of proliferation in the cervix.

Early studies using tritiated thymidine (Schellhas and Heath, 1969; Avarette et al., 1970) identified parabasal cells as the major proliferative component in the human cervix, the basal cells acting as a reserve cell layer. Increasing grades of CIN were associated with increasing numbers of labelled cells and with labelled cells being identified in the upper layers of cervical epithelium. In this early study increased labelling was identified in pregnant women without morphological evidence of CIN, the pattern of labelling resembling that seen in CIN I (Schellhas and Heath, 1969).

BrdU usually involves the incubation of a freshly obtained fragment of tissue in vitro. Increased proliferative activity has been identified in cervixes showing squamous metaplasia and reserve cell hyperplasia with respect to samples of normal cervix (Fukuda et al., 1990). Progressive increases in the percentage of labelled cells and the layers of cervical epithelium containing labelled cells are identified with increasing histological grade of CIN (Fukuda et al., 1990; Kaneko and Izutsu, 1995).

In invasive cervical carcinomas Bolger et al. (1993) identified marked heterogeneity in the BrdU LI within tumours. Nevertheless the labelling index (LI) increased with advancing stage and increasing tumour size. Minagawa et al. (1993) suggested that the LI also correlated with the patient's age.

**Special techniques available in routine diagnostic laboratories**

KI-67 is an antibody generated when mice were immunized with nuclear extract from the Hodgkin's disease derived LA28 cell line (Gerdes et al., 1983, 1984). KI-67 immunolabelling correlates with the cell cycle and consequently is a widely employed marker of cell proliferation (Sawhney and Hall, 1992). KI-67 has been immunolocalised to the parabasal and basal layers in the normal (Al Saileh et al., 1995) and metaplastic (Bulten et al., 1996) ectocervix.

Variations in the KI-67 labelling in the normal cervix in different phases of the menstrual cycle have been described in detail by Konishi et al. (1991). In their study they were unable to identify KI-67 labelling in either the basal or reserve cell layers of the normal squamous epithelium during the follicular phase. There was some positivity in the parabasal layer. In the luteal phase the LI increased with focal positivity of basal and reserve cell epithelium and extensive parabasal cell positivity. The number of cycling cells also increased during pregnancy, reflecting earlier studies using tritiated thymidine (Schellhas and Heath, 1969). KI-67 labelling was also identified in the parabasal, basal and intermediate layers of a series of condylomas studied by this group. In CIN lesions KI-67 labelling in the basal and parabasal layers was again noted, with additionally, the identification of KI-67 positive cells in the intermediate and superficial layers of the squamous epithelium, the percentage of positive cells and the height above the basement membrane at which they were located, increasing as the grade of CIN increased (Al Saileh et al., 1995; Konishi et al., 1991). Konishi et al. (1991) identified progesterone receptors in the majority (19 of 26) of cases of CIN. Condylomas were also found to be hormone-dependent, their growth increasing during pregnancy. They concluded that the growth of healthy and diseased cervical epithelium was regulated by sex hormones operating via progesterone and estrogen receptors.

Al Saileh et al. (1995) described a similar distribution of KI-67 labelling in normal and dysplastic cervical epithelium but identified a higher KI-67 labelling density in cervixes in which HPV types 16/18 and 31/33/35 were identified in comparison with the labelling density associated with HPV types 6/11. The association between proliferation rate and particular HPV types has been confirmed by Tervahauta et al. (1994).

In Al Saileh et al. (1995) study the KI-67 labelling density did not allow normal, metaplastic and low grade squamous intraepithelial lesions (SIL's) to be distinguished since there was considerable overlap between the groups. It was possible however to distinguish between the normal cervix and low grade
In a small series of stage I and II invasive carcinomas Cole et al. (1992) identified no association between LI and tumour stage, lymph node status or short term survival rate. Nakano and Oka (1993) found that a high LI was associated with a better histological response and improved survival rate after radiotherapy. A low LI was associated with tumour recurrence and metastasis later. Oka et al. (1993) discovered that following radiotherapy (5.4-9.0 Gy) the growth fraction in patients with low LIs doubled. Unfortunately follow-up data was not available to indicate if this was transformed into an improved survival rate.

MIB-1, an antibody which detects the Ki-67 antigen on formalin fixed paraffin embedded tissue, allowing its use on routinely processed diagnostic and archival material, has shown similar results to those seen with conventional Ki-67 immunoreactivity on frozen section material (Bulten et al., 1996; McCluggage et al., 1996; Payne et al., 1996). The presence of a few scattered immunoreactive cells in the apparently maturing epithelium and at higher levels than the most superficially placed mitoses (Bulten et al., 1996; McCluggage et al., 1996) lends weight to the view that some degree of cellular abnormality involves the entire thickness of the squamous epithelium in CIN lesions. CIN is graded according to the third of the epithelium (lower, middle, upper) in which neoplastic basaloid cells appear. Grading the CIN lesion on the basis of the third of the epithelial thickness in which MIB-1 immunoreactive cells could be identified would result in the over-grading of some CIN lesions (Bulten et al., 1996). Bulten et al. (1996) developed a technique which used specialised image analysis equipment to quantify the Ki-67 LI; the number of Ki-67 positive cells per length of basement membrane; the maximum value of the relative distance of Ki-67 positive nuclei from the basement membrane and the 90th percentile of the relative distance of Ki-67 positive nuclei from the basement membrane. All four proliferation related parameters correlated statistically with the grade of CIN but the 90th percentile allowed precise classification of the CIN lesion. The need to use specialised image analysis equipment would however compromise the use of an otherwise simple antibody technique for use in routine diagnostic laboratories.

The combination of MIB1 with an image analysis system was also described by Boon et al. (1994) who used the Papnet system to detect labelled dyskaryotic cells in cervical cytology smears. Following microwave processing high grade SIL’s (squamous intraepithelial lesions) were detectable but lower grade lesions were not. Although the system did not allow for the distinction between progressive and regressive lesions, Boon et al. (1994) concluded it provided a means of detecting intact fragments of high grade SIL’s particularly on blood-stained smears. This is a very valuable innovation. A system which allowed these cases to be detected would improve the effectiveness of this cervical screening programme since Robertson and Woodend (1993) have shown that such cases are often overlooked by cytology screeners and are a major cause of false negative smears preceding a diagnosis of invasive cervical carcinoma.

In invasive carcinomas a lower cycling cell population has been demonstrated in adenocarcinomas than squamous cell carcinomas. The cycling population increases in squamous cell carcinomas after radiotherapy whilst that in adenocarcinomas remains static (Oka et al., 1996).

Proliferating cell nuclear antigen (PCNA) is an auxiliary protein for DNA polymerase delta and is an absolute requirement for DNA synthesis. It can therefore be used as a marker of cell proliferation in histological material (McCormick and Hall, 1992).

In the cervix the distribution of PCNA reflects that of Ki-67 with immunolocalisation to the basal and para-basal layers of the normal cervix (Al Nafussi et al., 1993; Mittal et al., 1993; Raju 1994; Steinbeck et al., 1995) and increasing number of PCNA immunopositive epithelial cells at progressively higher layers in the squamous epithelium as the grade of CIN increases (Al Nafussi et al., 1993; Mittal et al., 1993; Kobayashi et al., 1994; Raju, 1994; Kaneko and Izutsu, 1995; Steinbeck et al., 1995). The development of a condyloma is also associated with some cellular positivity in the upper cell layers. Kobayashi et al. (1994) compared the PCNA LI in the cells of the basaloid neoplastic layers in different grades of CIN. There was no evidence of a statistically significant difference in the lower grade lesions. A statistically significant difference was demonstrated in those CIN lesions in which the full thickness of the epithelium (carcinoma in situ) was replaced by neoplastic basaloid cells and those in which some superficial maturation (severe dysplasia) was identified. Raju (1994) identified a higher LI in foci of intracryptal extension of CIN with all the neoplastic cells reacting. These increases in LI reflect an alteration in biological behaviour since patients with intracryptal extension and full thickness dysplasia are at increased risk of recurrent or invasive disease (Tidbury et al., 1992).

As with the Ki-67 LI, Oka et al. (1996) identified a lower PCNA LI in adenocarcinomas than in squamous cell carcinomas. No increase in cycling cell population was demonstrated following radiotherapy. Both Raju (1994) and Steinbeck et al. (1995) found that proliferation was confined to the marginal neoplastic cells with weak or no labelling of keratinising epithelium. Lichtnegerger (1995) who was unable to identify an association between PCNA LI and lymph node metastasis whilst Al Nafussi et al. (1993) found a high LI in squamous cell carcinomas irrespective of clinical outcome, with no association between the LI and either the tumour grade or survival.

SIL’s on the one hand and high grade SIL’s on the other. Devictor et al. (1993) found a higher Ki-67 LI in cervices showing microinvasive and invasive cervical carcinomas than in those showing CIN III without invasion, a finding confirmed by others (Konishi et al., 1991).
In glandular lesions statistically significant differences in the Ki-67 and MIB-1 LI's between benign endocervical lesions and glandular intraepithelial neoplasia of the cervix have been identified. The differences between invasive adenocarcinoma and benign tuboendometrioid metaplasia was also found to be statistically significant (McCluggage et al., 1995; van Hoeven et al., 1997). Unfortunately the difference between the LI in invasive carcinomas and cervical intraepithelial glandular neoplasia, a frequent diagnostic dilemma especially in small focal or heavily inflamed lesions, was not statistically significant. Furthermore given the degree of overlap between the invasive and benign groups in one study, it is unlikely that these results will find a diagnostic application (McCluggage et al., 1995).

As with other proliferation markers, trends in the numbers and distribution of AgNOR's in association with increasing grades of CIN have been demonstrated (Rowlands, 1988; Thickett et al., 1989; Kobayashi et al., 1994; Kaneko and Izutsu, 1995). Although some authors have found statistically significant differences in AgNOR counts between normal and low grade as opposed to high grade CIN lesions (Rowlands, 1988; Kaneko and Izutsu, 1995) the diagnostic value of these findings is limited by the degree of overlap in the different grades of CIN (Thickett et al., 1988; Kobayashi et al., 1994; Kaneko and Izutsu, 1995).

In glandular lesions Allen and Gallimore (1992) identified statistically significant differences in the AgNOR counts in normal and microglandular hyperplasia compared with in-situ and invasive adenocarcinoma. AgNOR counts would not have allowed a distinction between in-situ and invasive glandular neoplasia.

AgNOR counts in invasive cervical carcinomas have shown statistically significant differences between adenocarcinoma and adenosquamous carcinoma (Miller et al., 1994) and between invasive and benign endocervical tissues (Allen and Gallimore, 1992). Statistically significant differences were also found in high grade as opposed to low grade tumours and in tumours with lymphovascular invasion. No association could be demonstrated between AgNOR counts and tumour size or stage (Miller et al., 1994). Thus AgNOR counts were a feature of histological type and differentiation rather than tumour extent.

Techniques requiring specialised equipment

Nuclear DNA content has been measured using flow cytometry (Thickett et al., 1989; Pieters et al., 1992; Minagawa et al., 1993; Kristensen et al., 1995; Zolzer et al., 1995) and static cytometry (Nasiell et al., 1979; Bibbo et al., 1989; Steinbeck et al., 1995) in both in-situ and invasive neoplasms. The proportion of aneuploid as opposed to polyploid lesions has been shown to increase with increasing grade of CIN (Steinbeck et al., 1995). A correlation between high grade CIN lesions and proliferative index (Thickett et al., 1989) has also been demonstrated.

In a large series of 211 cases, Bibbo et al. (1989) found that over 90% of aneuploid CIN II and III lesion either progressed to high grade disease or remained static. All aneuploid cases of CIN I progressed and all polyploid cases of CIN I regressed implying that this might provide a means of identifying those cases of CIN I which require follow up and treatment and those which might safely be discharged from follow up. All of the cases which progressed to invasive malignancy were aneuploid. Overall Bibbo found aneuploidy to be a better indicator of disease progression than the histological grade of CIN. Applying methods of DNA quantitation to cervical smears would therefore seem to offer a possible means of identifying those patients in whom colposcopy can be avoided. Unfortunately a follow up series of 22 patients did not identify a difference between the DNA distribution of 12 cases of moderate dyskaryosis which progressed and the 10 cases which did not (Nasiell et al., 1979).

In invasive squamous cell carcinoma of the cervix Minagawa et al. (1993) found that aneuploid tumours were more common in patients over 65 than in younger women. Kristensen et al. (1995) was unable to identify either DNA ploidy or S phase fraction as being of significance in predicting patient prognosis in a large study of 415 cases. Miller et al. (1994) found no correlation between either DNA index or S phase fraction and tumour stage, grade or histological type. Large tumours and those with lymphovascular involvement had a higher DNA index.

Practical applications

Can any of these findings be applied to diagnostic practice? Since Ki-67 and PCNA immunoreactivity are largely confined to the basal and parabasal layers of normal epithelium, with only occasional scattered positive cells in the intermediate and superficial layers in metaplastic epithelium, these techniques may permit the exclusion or confirmation of a CIN lesion in problematic cases. The technique would appear to be of particular value where the atrophic epithelium, encountered occasionally in hysterectomies from post-menopausal women, bears a resemblance to a CIN III lesion (McCluggage et al., 1996). If there is no evidence of Ki-67 labelling in the epithelial nuclei or if it is confined to the parabasal layer, the diagnosis of atrophy will be confirmed. This will avoid the need to process and examine additional blocks.

Unfortunately given the degree of overlap between different grades of CIN with AgNOR counts and, PCNA and Ki-67 labelling, it seems unlikely that these methods will provide an alternative to the morphological grading of CIN in routine practice. Initial results suggest that in the future these techniques or the assessment of nuclear DNA may allow those cases of CIN which will progress, and therefore require treatment, to be distinguished from
Acknowledgements. I wish to thank Sue McEnroe of the Nuffield Post Graduate Medical Library, Somerset for obtaining the references and Mrs Caryl Davies for typing this review.

References


Proliferation markers in cervical disease


