Research progress on SIRT1 and sepsis

Authors: Lincheng Li, Mingchuan Liu, Mengyuan Cao, Ting He and Xiaozhi Bai

DOI: 10.14670/HH-18-146
Article type: REVIEW
Accepted: 2019-07-08
Epub ahead of print: 2019-07-08

This article has been peer reviewed and published immediately upon acceptance.
Articles in “Histology and Histopathology” are listed in Pubmed.
Pre-print author’s version
Research progress on SIRT1 and sepsis

Lincheng Lia1, Mingchuan Liua1, Mengyuan Cao1, Ting Hea3 and Xiaozhi Baia3

1 Brigade 4, College of Basic Medicine, the Fourth Military Medical University, Xi’an, Shaanxi, China
2 Emergency Department, Xijing Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China
3 Department of Burns and Cutaneous surgery, Xijing Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China

*Lincheng Li and Mingchuan Liu contributed equally to this review
#Corresponding author: Xiaozhi Bai and Ting He

Offprint requests to: Xiaozhi Bai, Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi’an, Shaanxi, China. 710032 e-mail: baixiaozhi006@126.com

Summary: SIRT1, a member of the sirtuin family, belongs to the NAD$^{+}$-dependent class III histone deacetylase. SIRT1 can regulate gene expression by catalyzing non-histone and histone lysine residues deacetylation. SIRT1 also plays important roles in glucose and lipid metabolism, cell aging, tumorigenesis and inflammation. Recent studies indicate that SIRT1 can inhibit the inflammatory responses via regulating several inflammatory signaling pathways. It is closely related to the occurrence and development of sepsis and other inflammatory diseases. Research has been done on relevant signaling pathways of SIRT1 as well as its target genes during inflammation. SIRT1 is a hot spot in uncontrolled inflammatory response research. This article focuses on the role of SIRT1 in inflammation, especially its targets and involved signaling pathways in sepsis, and tries to provide more convincing evidence for the clinical treatment of sepsis and other inflammatory diseases.

Keywords: SIRT1; deacetylase; sepsis; NF-κB; MAPK;

Introduction

Sepsis should be defined as life-threatening organ dysfunction caused by a dysregulated host response to infection, which is a severe complication of burns, trauma, and other critical injuries. The new definition pays more attention to a series of pathophysiological responses of the body's response to infection, not just infection itself(Singer et al., 2016). The mortality of sepsis is about 20% (Jones and Puskarich, 2014).

SIRT1 is a member of the Sirtuin family, and its functions are complex and diverse. More and more studies indicate that SIRT1 may be involved in the process of sepsis, inflammation, oxidative damage, cell apoptosis and metabolic disorders. Additionally, it regulates multiple signaling pathways in sepsis. Therefore, SIRT1 is seen as a promising candidate molecule in the treatment of sepsis.
1. Introduction of SIRT1

In 1986, Ivy et al. (Ivy et al., 1986) discovered a gene that prolonged cell life in lower organisms such as yeast, nematodes, and fruit flies, and named it Silence Information Regulator 2 (Sir2). In 1999, Frye et al. (Frye, 1999) found five genes highly homologous to yeast Sir2 in human belonging to the Sirtuin family, named Sirt1 to Sirt5. Later, Sirt6 and Sirt7 were discovered. The members of the Sirtuin family have different locations in cells and perform different biological functions in life. SIRT1, 6 and 7 mainly function in the nucleus, while SIRT3, 4 and 5 are localized in mitochondria. SIRT2 is mainly located in cytoplasm (Houtkooper et al., 2012). The members of the Sirtuin family play an important role in sepsis (Table 1). The Sirtuin family may be homeostasis protectors that coordinate immunometabolism. SIRT1 is widely studied. It is a star molecular in various fields. SIRT1, a NAD+-dependent protein deacetylase with a highly conserved amino region, performs different functions mainly by catalyzing the deacetylation of histones or non-histones. SIRT1 removes the acetyl moieties from the ε-acetamido groups of lysine residues of histones and other signaling proteins, thus promoting chromatin condensation and suppressing gene transcription (Rahman et al., 2012). A number of studies have shown that SIRT1 is involved in the regulation of metabolism, cellular senescence, inflammatory response and oxidative stress, which is associated with the development of metabolic syndrome, and tumorigenesis, as well as neurodegenerative diseases (Martin et al., 2015). SIRT1 participates in the deacetylation of FOXO1, NF-κB, and p53, which makes it a key factor in sepsis.

<table>
<thead>
<tr>
<th>Sirtuin</th>
<th>Biological Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIRT1</td>
<td>Decreases pro-inflammatory cytokine/chemokine and adhesion molecule expression (Wang et al., 2015)</td>
</tr>
<tr>
<td>SIRT2</td>
<td>Represses adipocyte differentiation (Lin et al., 2013)</td>
</tr>
<tr>
<td>SIRT3</td>
<td>Represses mitochondrial OXPHOS and reduces mitochondrial biogenesis (Liu et al., 2015)</td>
</tr>
<tr>
<td>SIRT4</td>
<td>Increases glycolysis and glucose oxidation (Mathias et al., 2014)</td>
</tr>
<tr>
<td>SIRT5</td>
<td>Decreases interaction between SIRT2 and NF-κB p65; Enhances the pro-inflammatory response (Qin et al., 2017)</td>
</tr>
<tr>
<td>SIRT6</td>
<td>Modulates glucose and fatty acid homeostat (Long et al., 2017)</td>
</tr>
<tr>
<td>SIRT7</td>
<td>Regulates genomic stability and metabolic response of cells (Li et al., 2016)</td>
</tr>
</tbody>
</table>

Table 1: The role of different sirtuins during sepsis.

2. Recent research on sepsis and SIRT1

With the improvement of intensive care systems and the standardization of sepsis treatment (Rhodes et al., 2017), sepsis mortality rate has decreased significantly, but it is still reported as a leading cause of death in critically ill patients (Xavier et al., 2017). The mechanism of sepsis is complex. During sepsis, the early hyperinflammatory state evolves to a subsequent hypoinflammatory state with significant immunosuppression characterized by loss of immune cells but no enduring cell-autonomous defects in T-cell function (Markwart et al., 2014). A few exemplary cytokines which could be regarded as biomarkers change at different stages of sepsis (Faix, 2013) (Table 2). A clear difference in cellular metabolism can be observed between the
hyperinflammatory and the immunotolerant state. (Fig. 1) (Table 3) Glycolysis and pentose phosphate pathway are up-regulated but oxidative phosphorylation is suppressed in the hyperinflammatory state (Wang et al., 2018). While during immune tolerance, ATP generation is dependent on fatty acid β-oxidation, glycolysis is often down-regulated (Cheng et al., 2016). Compared with TCA cycle and oxidative phosphorylation, glycolysis can become highly up-regulated following stimulation with rapid ATP generation, which is more favorable in acute inflammation (Arts et al., 2017). Nicotinamide adenine dinucleotide (NAD+) is an important hydrogen carrier in glycolysis and TCA cycle, which is an indispensable cofactor for SIRT1 in regulating the inflammatory response. Interestingly, NAD+ concentrations highly differ between hyperinflammatory and immunotolerant state. Therefore, SIRT1 has different roles at different stages of sepsis.

<table>
<thead>
<tr>
<th>hyperinflammatory phase</th>
<th>immunosuppressive phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNF-α</td>
<td>IL-10</td>
</tr>
<tr>
<td>IL-1β</td>
<td>TGF-β</td>
</tr>
<tr>
<td>IL-6</td>
<td>CTLA-4</td>
</tr>
<tr>
<td>IL-8</td>
<td>PD-1</td>
</tr>
<tr>
<td>MCP-1</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Major cytokines at different stages of sepsis.

![Fig. 1](image1.png) **Fig. 1** Metabolic changes in sepsis. There is increased glycolysis in the hyper-inflammatory phase, while the hypo-inflammatory phase is associated with increased fatty acid oxidation.
Metabolic State	Glycolysis	PPP	TCA Cycle	OxPhos	Fatty acid oxidation
Hyperinflammatory | up-regulated | up-regulated | down-regulated | down-regulated | up-regulated
Immunosuppressive | down-regulated | unknown or unchanged | unknown or unchanged | up-regulated | up-regulated

Table 3 Metabolic changes in sepsis.

3. **Signaling pathways that involve in SIRT1 and sepsis.**

Multiple signaling pathways such as **NF-κB, MAPK, JAK/STAT, and PI3K/Akt** are involved in the development of sepsis (Zhang and Wang et al., 2016; Zhang and Li et al., 2016). Several processes, including uncontrolled inflammatory response, immune dysfunction, coagulopathy, mitochondria injury, autophagy and gene polymorphism, are related in this process (Rizzo and Dudek, 2017). During these, uncontrolled inflammatory response is thought to be one of the most important factors. The therapy of sepsis is still a tough problem. Among all these studies, SIRT1 is one of the most promising molecules for the alleviation of sepsis. SIRT1 can suppress inflammation and oxidative stress as well as change metabolism by regulating NF-κB, MAPK, JAK/STAT and PI3K/Akt signaling pathways during sepsis. And finally it could alleviate organ damage in sepsis. (**Table 4**)

Table 4 Signaling pathways involved in SIRT1 and sepsis.
3.1 SIRT1 and NF-κB signaling pathway

NF-κB is a nuclear transcription factor that mediates intracellular signaling transduction. NF-κB, a heterodimer composed of p50 and p65, usually binds to the IκB subunit and stays in an inactive state. During sepsis, IκB kinase (IKK) catalyzes the phosphorylation of IκB subunit and leads to the degradation of it. Then NF-κB complex is released to enter the nucleus and regulates inflammation related gene transcription (Shih et al., 2015). NF-κB signaling pathway can be activated by the acetylation of multiple lysine sites of p65 subunit (eg, Lys218, Lys221, Lys310) to increase the transcription of inflammatory factors(Greene and Chen, 2004). Recent studies have confirmed that SIRT1 can alleviate NF-κB-mediated inflammation and metabolic disorders (Xie et al., 2013; Edwards et al., 2013; Chen et al., 2018). SIRT1 is able to bind to RelA/p65 (Lys310) to deacetylate p65 subunit and to inhibit the activity of NF-κB pathway, which finally reduces inflammatory damage and apoptosis (Zhou et al., 2014). With the deacetylation of RelA/p65 (Lys310), other lysine sites (eg, Lys314, Lys315) of p65 are exposed and methylated, which enhances the ubiquitination and degradation of p65 (Yang et al., 2010) (Fig. 2). In addition, the inhibitory RelB protein could suppress the transcriptional expression of TNF-α by replacing the deacetylated RelA/p65 protein, and SIRT1 could recruit RelB protein (Liu et al., 2011). A number of studies have shown that in SIRT1 knockout mice, cecal ligation and puncture (CLP) induces phosphorylation and degradation of IκBα and activation of NF-κB pathway in lung. Then it increases precursor and mature forms of IL-1 and finally aggravates inflammation (Gao et al., 2015; Lan et al., 2017). Vice versa, NF-κB signaling pathway can inhibit the expression of SIRT1 (Zhang et al., 2010; Kauppinen et al., 2013). The promoter region of SIRT1 gene contains multiple binding sites for NF-κB transcription factors (Voelter-Mahlknecht and Mahlknecht, 2006). Li et al (Li and Wang et al., 2012) have discovered that NF-κB can increase the expression of miR-34a, which depends on the presence of p53. And miR-34a can inhibit SIRT1 expression by targeting the 3'UTR region of SIRT1 (Yamakuchi et al., 2008). Research has shown that NF-κB signaling pathway can increase the expression of IFN-γ (Sica et al., 1997; Kang et al., 2014), CIITA and HIC1, and thus inhibit the expression of SIRT1 (Li and Zhao et al., 2012).

Fig. 2 IκB kinase (IKK) catalyzes the phosphorylation of IκBα subunit and leads to the degradation of it. Then NF-κB complex is released to enter the nucleus and regulates inflammation related gene transcription. However, SIRT1 is able to deacetylate RelA/p65 and inhibit the activity of NF-κB pathway and finally reduces the release of inflammatory factors (eg, IL-1, TNF-α).
3.2 SIRT1 and MAPK signaling pathway

Mitogen-activated protein kinase (MAPK) is a group of highly conserved serine-threonine protein kinase expressed by eukaryotic cells that mediates signaling transfer from cell surface to the nucleus (Lee et al., 2016). Each of the MAPK signaling pathways consists of three tiers of protein kinases termed MAP3K, MAPKK and MAPK. It also has two additional tiers, the upstream MAP4K and the downstream MAPKAPK (Keshet and Seger, 2010). The five protein kinase cascades are sequentially activated by phosphorylation, and then activate downstream targets (such as transcription factors, protein kinases, etc.). The signaling pathway of MAPK family includes ERK, p38, JNK and BMK-1 pathway (Cossa et al., 2013). MAPK signaling pathway is involved in the release of inflammatory cytokines, oxidative stress, cell apoptosis and calcium overload (Koffel et al., 2014; de Oliveira et al., 2015), which are important mechanisms of organ damage in sepsis. Several studies have shown that SIRT1 can regulate MAPK pathway via Akt/ASK1 signaling by reducing p38 and JNK phosphorylation and increasing ERK phosphorylation (Becatti et al., 2012; Becatti et al., 2014), improving organ functions in sepsis (Yang et al., 2018). Studies have shown that in mice, macrophage specific SIRT1 knockout can broadly activate the JNK pathway, increasing JNK phosphorylation and LPS-stimulated TNF-α secretion (Yoshizaki et al., 2009; Yoshizaki et al., 2010). It is also reported that SIRT1 can inhibit the activity of MKK3, which is an upstream kinase of p38, and then increase the mitochondrial biogenesis in tissue and cell, reducing the production of reactive oxygen species (ROS), and inhibiting inflammation and lung injury in septic mice (Mannam et al., 2014). Bai et al.(Bai et al., 2015) has reported that SIRT1 activation may attenuate the apoptosis of pulmonary microvascular endothelial cells (PMVEC) through p38 MAPK pathway. SIRT1 also has protective and anti-apoptotic effects on severe burn induced acute lung injury mice, suggesting that SIRT1 activation may be a potential strategy for organ protection after severe burns.

3.3 SIRT1 and JAK/STAT signaling pathway

JAK/STAT signaling pathway can be activated by various cytokines and growth factors. It is involved in processes such as cell proliferation, differentiation, inflammation and immune response (Ladyman and Grattan, 2013; Palanivel et al., 2014; Arumuggam et al., 2015; Villarino et al., 2017). The JAK/STAT signaling pathway is mainly composed of three parts: tyrosine kinase-related receptor, tyrosine kinase JAK and transcription factor STAT. JAK is a family of non-receptor tyrosine kinases, including four tyrosine kinases named JAK1, JAK2, JAK3 and TYK2. The STAT family, a signaling transduction and transcriptional activator, is a substrate of JAK, including seven transcription factors (STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6) (Villarino et al., 2015). Dimerization of receptors occurs after ligand binding, which activates JAK through phosphorylation of tyrosine residues. Then JAK selectively phosphorylates STAT, and dimeric STAT translocates to nucleus to regulate gene transcription (Nicolas et al., 2013; Jang and Baik, 2013). Studies have shown that JAK/STAT pathway is related to many important cytokines involved in sepsis (Cai et al., 2015; Lv et al., 2015). The interaction between SIRT1 and JAK2/STAT3 pathway cannot be ignored. A study indicates that SIRT1/JAK/STAT3 signaling pathway is an important target for the inhibition of tumorigenesis of various drugs (Xu and Cai et al., 2018). Park et al.(Park et al., 2016) has reported that activation of SIRT1 can inhibit...
phosphorylation of JAK2/STAT3 pathway and then inhibit pro-inflammatory responses and increase cell viability. Recent research has shown that activation of JAK/STAT signaling pathway in mice macrophages can increase SIRT1 expression (Yoo et al., 2014). Further studies reveal that JAK1 is a tyrosine kinase which catalyzes the phosphorylation of tyrosine residues in SIRT1 (eg, Tyr280, Tyr301), and thereby to promote the interaction of SIRT1 and STAT3. It finally inhibits STAT3 transcription. JAK1 may feedback to regulate JAK1/STAT3 signaling pathway by mediating the phosphorylation of SIRT1 (Gao et al., 2011; Wang et al., 2018).

3.4 SIRT1 and PI3K/Akt signaling pathway

Phosphatidylinositol 3 kinase (PI3K) is a class of kinases that specifically catalyzes the phosphorylation of phosphatidylinositol at position 3 (Kong and Yamori, 2009). PI3K can be divided into three categories, in which class I PI3K is most widely studied. Class I PI3K is a heterodimer, composed of a catalytic subunit p110 and a regulatory subunit p85. In mammal, there are seven kinds of regulatory subunits (p85α, p85β, p55α, p55γ, p50a, p101 and p87) and four kinds of catalytic subunits (p110α, p110β, p110γ and p110δ) (Vanhaesebroeck et al., 2010). Various stimulus can activate PI3K, including cytokines, growth factors, and hormones (Guo et al., 2015). In addition, PI3K also possesses serine/threonine (Ser/Thr) kinase activity. The serine/threonine kinase Akt (also known as PKB) is a serine/threonine-specific protein kinase comprising three subtypes (AKT1, AKT2 and AKT3) (Jha et al., 2015). Akt and its upstream kinase PDK1 interact with the PI3K-producing phosphatidylinositol triphosphate (PIP3) and form a complex. The complex enters cell membrane via PH domain. PDK1 catalyzes phosphorylation of Akt at Thr308 to partially activate the Akt pathway. Phosphorylation of Akt at Ser473 by the mammalian target of rapamycin (mTOR) stimulates full Akt activity (Hemmings and Restuccia, 2012). Studies have shown that PI3K/AKT signaling pathway can improve LPS-induced acute lung injury by regulating IkBα/NF-κB pathway (Kim et al., 2012). Narsa et al. (Reddy et al., 2015) have found that the PI3K/AKT signaling pathway may improve inflammation by regulating the Nrf2-ARE signaling pathway and thus protect hyperoxia-induced ALI. Multiple studies have indicated that PI3K/AKT is involved in pathological changes such as insulin resistance and tumorigenesis. And the mechanism of improving these diseases by SIRT1 is closely related to PI3K/AKT pathway (Carnero et al., 2008; Frojdo et al., 2011; Sarma et al., 2015; Wang et al., 2015). In addition, SIRT1 is reported to inhibit the PI3K/AKT pathway and mediate the deacetylation of PI3K and NF-κB to inhibit inflammation (Busch et al., 2012; Liu et al., 2016). Shakibaei et al. (Shakibaei et al., 2011) found that SIRT1 can promote the formation of SIRT1-p300 complex, leading to the inactivation of p300 acetyltransferase and inhibition of IL-1β-induced PI3K acetylation, and finally improve inflammation such as rheumatoid arthritis.

3.5 SIRT1 and FoxO signaling pathway

The FoxO family is a subclass of the forkhead transcription factor (Kousteni, 2011). The "forkhead domain" of FoxO protein has three alpha helices (helix 1, 2, 3) and two winged structures formed by two large loops (Maiese et al., 2008). Both nematodes and drosophila have a homologous gene of FoxO (Webb and Brunet, 2014). In human, there are four major FoxO
proteins (FoxO1a, FoxO3a, FoxO4 and FoxO6), which are widely expressed in different tissues and participate in oxidative stress response, antioxidant defense, metabolism, cell death and proliferation (Monsalve and Olmos, 2011). Studies have shown that FoxO transcription factors play a role in anti-oxidative stress by regulating the expression of genes encoding antioxidant proteins (such as SOD, CAT, etc.) intracellularly and extracellularly (Klotz et al., 2015). It has been reported that SIRT1 can deacetylate and activate FoxO, and then synthesize SOD and catalase (CAT) (Daitoku et al., 2004). It could enhance the antioxidant activity, and reduce LPS-induced oxidative stress damage. Other studies have shown that SIRT1 can reduce the oxidative damage of ROS and protect the endothelial barrier. The mechanism is related to deacetylating FOXO3a, enhancing the expression of SOD2 and reducing the expression of NOX4 (Shimada et al., 2014; Zhang et al., 2017). It is suggested that SIRT1/FoxO/SOD pathway plays an important role in the improvement of sepsis.

3.6 SIRT1 and Notch signaling pathway

Mammals have four Notch receptors (Notch 1-4) and five ligands. Receptor-ligand interaction initiates three times cleavage in the Notch receptor protein extracellular domains and transmembrane domains, and then releases Notch receptor intracellular domain (NICD). NICD enters the nucleus and binds to transcription factor (RBP)-Jκ and activates the transcription of Notch target genes (Geisler and Strazzabosco, 2015), including HES and HEY family. Studies have shown that Notch signaling is closely related to innate immunity and inflammation (Shang et al., 2016). It has been reported that in the early stage of sepsis, Notch signaling is activated and then participates in the regulation of PD-1 expression. Conversely, inhibition of Notch signaling reduces PD-1 expression and alleviates sepsis (Pan et al., 2015). Bai et al. (Bai et al., 2018) has also reported that SIRT1 knockout significantly aggravates LPS-induced inflammation and organ damage, since SIRT1 inhibits Notch signaling through NICD deacetylation and ultimately alleviates sepsis. It has also been reported that SIRT1 interacts with lysine specific demethylase 1 (LSD1) directly, and then affects histone deacetylation and inhibits the regulation of Notch signaling pathway (Mulligan et al., 2011).

3.7 SIRT1 and PGC-1α pathway

PGC-1α is a transcriptional coactivator of peroxisome proliferator-activated receptor (PPARγ) and is a major regulator of mitochondrial biogenesis (Valero, 2014). PGC-1α interacts with different transcription factors, such as nuclear receptor PPAR-γ, cAMP response element binding protein (CREB) and nuclear respiratory factor (NRFs), to regulate mitochondrial biogenesis and fatty acid oxidation (Sweeney and Song, 2016). In addition, PGC-1α can increase the expression of SOD and exert its anti-oxidative effect (Lu et al., 2010). Mitochondrial destruction caused by oxidative stress and dysregulated energy metabolism is a prominent feature of sepsis (Larche et al., 2006). It leads to multiple organ failures and is life threatening (Singer, 2008; Duran-Bedolla et al., 2014). SIRT1 plays an important role in improving energy metabolism disorders and releasing oxidative stress (Li and Zhu et al., 2013; Xu and Qin et al., 2018). It has been reported that NAD+/SIRT1 signaling can effectively alleviate oxidative stress in sepsis, reduce myocardial dysfunction, and increase the survival rate of sepsis (Hong et al., 2018). PGC-1α is important for SIRT1 to improve
sepsis (Lagouge et al., 2006). Zschoernig et al. (Zschoernig and Mahlknecht, 2008) have reported that SIRT1 can catalyze the deacetylation of PGC-1α and regulate the translocation of NFE2L2 into the nucleus and bind to the antioxidant element (ARE) to induce the up-regulation of key antioxidant enzymes. It has also been reported that SIRT1 can catalyze the deacetylation of PGC-1α and then activate GA-binding protein transcription factor alpha (GABPA). It promotes translocation of transcription factors in mitochondria and ultimately leads to mitochondrial biogenesis and improves energy metabolism disorders in sepsis (McCreath et al., 2016).

3.8 SIRT1 and HMGB1-dependent signaling pathways

Many studies have shown that high mobility group box-1 protein (HMGB1) is involved in immune response in sepsis. It is an important late mediator in infection. The mechanism of HMGB1-mediated signal transduction is still unclear. However, receptors for advanced glycation end products (RAGE) and toll-like receptors 2/4 have been identified as important functional receptors for HMGB (van Beijnum et al., 2008). HMGB1 promotes the secretion of pro-inflammatory cytokines from mononuclear-macrophages via RAGE and TLRs receptor pathways and induces inflammatory responses by activating NF-κB (Zurolo et al., 2011). When inflammatory signals such as LPS and TNF-α activate monocytes, the two major lysine residues of HMGB1 are highly acetylated. Then HMGB1 is transferred from nucleus to cytoplasm (Bonaldi et al., 2003), and then released to extracellular as a pro-inflammatory cytokine. Acetylation is a key determinant of HMGB1 migration, while SIRT1 is capable of deacetylating HMGB1 and negatively regulates the nuclear export of HMGB1, and then inhibits the extracellular releasing of HMGB1 and improves inflammation (Hwang et al., 2015). Lan et al. (Lan et al., 2017) shows that the enhancement of SIRT1 significantly inhibits HMGB1-mediated inflammatory pathway and alleviates lung injury in CLP mice. In contrast, inhibition of SIRT1 leads to hyperacetylation of HMGB1 and promotes its extracellular release (Hong et al., 2018; Kim et al., 2018), suggesting that inhibition of HMGB1-mediated inflammatory pathway may be an important mechanism for SIRT1 to improve sepsis.

3.9 SIRT1 and other signaling molecules

Several studies have shown that miRNAs and IncRNAs are involved in both proinflammatory and anti-inflammatory responses in sepsis (Zhou et al., 2015; Mao et al., 2015). It is reported that SIRT1 can regulate miR-92 through the modulation of their upstream TFs under oxidative stress (Chen et al., 2013). Other studies have shown that SIRT1 can regulate memory and plasticity via its suppression of miR-134 by cooperating with YY1 (Gao et al., 2010). Besides, miR-132 can increase the acetylation levels of a SIRT1 target gene to regulate chemokine production (Strum et al., 2009). In addition to alleviating sepsis through the above pathways, SIRT1 has also been reported to inhibit the expression of IncRNA-CCL2 via sustaining a repressive chromatin state in the IncRNA-CCL2 locus, and down-regulating IncRNA-CCL2 and then reducing the expression of inflammatory cytokines (Jia et al., 2018). Sui et al. (Sui et al., 2016) showed that SIRT1 can inhibit the NLRP3/IL-1β axis in the hippocampus of septic mice, and suppress the development of brain diseases associated with sepsis. Other studies have shown that
SIRT1 significantly promotes the deacetylation of p53, heat shock protein 1 (HSF1) and H4K16, and reduces inflammation (Chen et al., 2016; Wang, Zhang and Yang et al., 2017).

4. The application prospect of SIRT1 in the treatment of sepsis

SIRT1 activators and inhibitors have been discovered and been used in molecular biological research, which may become a promising drug for the treatment of sepsis. At present, SIRT1 activators include paclitaxel, resveratrol, SRT1720, etc. SIRT1 inhibitors include Ex-527, AGK2, etc. (Dai et al., 2018). Resveratrol is a potential SIRT1 activator with anti-inflammatory effect. Studies have shown that resveratrol can reduce the expression of VCAM-1, ICAM-1, CRP and other molecules by inhibiting the activity of purified human proteasome (X, Y, Z) and immune proteasome (LMP7, LMP2, LMP10), and then decreasing organ damage during sepsis (Silswal et al., 2017). Moreover, changes of vascular permeability induced by LPS can be relieved by RhoA-ROCK-MLCP pathway (Wang, Zhang and Zhang et al., 2017), and alleviates microcirculation disorders and multiple organ damage. Li et al. (Li and Zhang et al., 2013) also reports that resveratrol can reduce pulmonary edema in LPS-induced septic mice and improve lung function as well as reduce pathological changes of lung. SRT1720 reduces ROS production by activating SIRT1. It reverses hemodynamic changes and microvascular barrier dysfunction in sepsis. It then reduces the production of pro-inflammatory cytokines and reduces the activation of inflammasome, which finally reduces multiple organ damage in septic mice (Khader et al., 2017; Zhang et al., 2017). In addition, some medicines can suppress inflammation and oxidative stress to effectively improve sepsis and to decrease mortality by increasing the activity of SIRT1. Qi et al. (Qi et al., 2017) find that salidroside can reduce the release of HMGB1 through activating AMPK-SIRT1 signaling pathway. It inhibits HMGB1 acetylation and nuclear cytoplasmic metastasis, ultimately reducing lung injury in septic rats. Cudratricusxanthone A (CTXA) reduces the acetylation of FoxO1, p53 and NF-κB/p65 by activating SIRT1 signaling, and finally suppresses inflammation and sepsis-induced liver damage (Lee et al., 2018). However, with one study of sepsis, it is found that most people who survived early sepsis are often susceptible to opportunistic pathogens and new serious infections (Boomer et al., 2011). But this is highly controversial. In spite of this, it would be better if patients could receive stage-specific treatment. The role of SIRT1 in sepsis also depends on the stage of sepsis. Unlike in the early stage, SIRT1 may be harmful during the adaptation stage. It has been reported that the inhibition of SIRT1, but not activation, may be a new method for the treatment of sepsis. Inhibition of SIRT1 can enhance immunity and improve prognosis (Vachharajani, Liu and Brown et al., 2014). Liu et al. (Liu et al., 2015) used TLR4 to stimulate human THP1 cells to simulate the adaptation stage of sepsis, and found that inhibition of SIRT1 by SIRT1 blocker Ex-527 in the sepsis adaptation stage can reverse energy metabolism changes caused by sepsis, increase the mitochondrial biogenesis, improve the development of sepsis, and prolong survival time. Other studies have shown that after sepsis mice go from high inflammation to low inflammation and immunosuppression, blocking SIRT1 can save almost all mice and reverse the abnormal adhesion of MVI leukocyte (Vachharajani, Liu and McCall, 2014). This kind of difference may indicate that the treatment of sepsis should be based on the stage of sepsis, which means stage-specific treatment is necessary.
5. Conclusion

Sepsis is a major problem in critical care medicine, which seriously endangers human life and health. Till now, the prevention and treatment of sepsis is not very effective. SIRT1 could be a breakthrough to understand the pathogenesis and referred signaling pathways of sepsis. With the deepening of research, the role of SIRT1 in acute inflammation and sepsis is becoming more and more prominent. Recent studies indicate that SIRT1 can improve sepsis and survival by regulating multiple signaling pathways such as NF-κB, MAPK, JAK/STAT and PI3K/Akt. However, SIRT1 may be harmful during the adaptation stage. The mechanism of SIRT1 in sepsis is complex and still needs further understanding. Nevertheless, with the continuous understanding of it, SIRT1 may become a promising factor in the treatment of sepsis.

References:

Chen G.D., Yu W.D. and Chen X.P. (2016). SirT1 activator represses the transcription of TNFalpha in

Redox regulation of FoxO transcription factors. Redox Biol. 6, 51-72.

expression in peripheral blood mononuclear cells of sepsis patients is associated with
immunopathology. Cytokine. 71, 89-100.
(2014). SIRT1 activator (SRT1720) improves the follicle reserve and prolongs the ovarian lifespan of
diet-induced obesity in female mice via activating SIRT1 and suppressing mTOR signaling. J. Ovarian
Res. 7, 97.
Commun. 376, 251-255.

Table 1

<table>
<thead>
<tr>
<th>Sirtuin</th>
<th>Biological Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIRT1</td>
<td>Decreases pro-inflammatory cytokine/chemokine and adhesion molecule expression (Wang et al., 2015)</td>
</tr>
<tr>
<td>SIRT2</td>
<td>Represses adipocyte differentiation (Lin et al., 2013)</td>
</tr>
<tr>
<td>SIRT3</td>
<td>Represses mitochondrial OXPHOS and reduces mitochondrial biogenesis (Liu et al., 2015)</td>
</tr>
<tr>
<td>SIRT4</td>
<td>Increases glycolysis and glucose oxidation (Mathias et al., 2014)</td>
</tr>
<tr>
<td>SIRT5</td>
<td>Decreases interaction between SIRT2 and NF-κB p65; Enhances the pro-inflammatory response (Qin et al., 2017)</td>
</tr>
<tr>
<td>SIRT6</td>
<td>Modulates glucose and fatty acid homeostat (Long et al., 2017)</td>
</tr>
<tr>
<td>SIRT7</td>
<td>Regulates genomic stability and metabolic response of cells (Li et al., 2016)</td>
</tr>
</tbody>
</table>

Table 1 The role of different sirtuins during sepsis.

Table 2

<table>
<thead>
<tr>
<th>hyperinflammatory phase</th>
<th>immunosuppressive phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNF-α</td>
<td>IL-10</td>
</tr>
<tr>
<td>IL-1β</td>
<td>TGF-β</td>
</tr>
<tr>
<td>IL-6</td>
<td>CTLA-4</td>
</tr>
<tr>
<td>IL-8</td>
<td>PD-1</td>
</tr>
<tr>
<td>MCP-1</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Major cytokines at different stages of sepsis.
Table 3

<table>
<thead>
<tr>
<th>Metabolic State</th>
<th>Glycolysis</th>
<th>PPP</th>
<th>TCA Cycle</th>
<th>OxPhos</th>
<th>Fatty Acid Oxidation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperinflammatory</td>
<td>up-regulated</td>
<td>up-regulated</td>
<td>down-regulated</td>
<td>down-regulated</td>
<td>up-regulated</td>
</tr>
<tr>
<td>Immunosuppressive</td>
<td>down-regulated</td>
<td>unknown or unchanged</td>
<td>unknown or unchanged</td>
<td>up-regulated</td>
<td>up-regulated</td>
</tr>
</tbody>
</table>

Table 3 Metabolic changes in sepsis.

Table 4

<table>
<thead>
<tr>
<th>Signaling Pathway</th>
<th>Interactions with SIRT1</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF-κB</td>
<td>SIRT1 binds to RelA/p65 (Lys310) to deacetylate p65 subunit (Zhou et al., 2014)</td>
</tr>
<tr>
<td></td>
<td>SIRT1 recruits RelB protein to silence proinflammatory genes (Liu et al., 2011)</td>
</tr>
<tr>
<td></td>
<td>NF-κB inhibits SIRT1 by increasing the expression of miR-34a (Yamakuchi et al., 2008)</td>
</tr>
<tr>
<td>MAPK</td>
<td>SIRT1 reduces p38 and JNK phosphorylation and increase ERK phosphorylation (Becatti et al., 2012; Becatti et al., 2014)</td>
</tr>
<tr>
<td></td>
<td>SIRT1 reduces the production of ROS by inhibiting MKK3 (Mannam et al., 2014)</td>
</tr>
<tr>
<td>JAK/STAT</td>
<td>SIRT1 inhibits phosphorylation of JAK2/STAT3 pathway and then inhibits pro-inflammatory (Park et al., 2016)</td>
</tr>
<tr>
<td></td>
<td>JAK1 catalyzes the phosphorylation of tyrosine residues in SIRT1 (e.g., Tyr280, Tyr301) (Guo et al., 2011)</td>
</tr>
<tr>
<td>PI3K/Akt</td>
<td>SIRT1 promotes the inactivation of p300 acetyltransferase and inhibits PI3K acetylation (Shahbaei et al., 2011)</td>
</tr>
<tr>
<td>FoxO</td>
<td>SIRT1 deacetylates FOXO3a, enhances the expression of SOD2 and reduces the expression of NOX4 (Shimada et al., 2014; Zhang et al., 2017)</td>
</tr>
<tr>
<td>Notch</td>
<td>SIRT1 inhibits Notch signaling through NICD deacetylation and interactions with LSD1 (Mulligan et al., 2011)</td>
</tr>
<tr>
<td>PGC-1α</td>
<td>SIRT1 deacetyltes PGC-1α and regulates the translocation of NRF2L2 into the nucleus and binds to the ARE (Zschoernig and Mahlknecht, 2008)</td>
</tr>
<tr>
<td></td>
<td>SIRT1 activates GABPA to promote translocation of transcription factors in mitochondria (McCreath et al., 2016)</td>
</tr>
<tr>
<td>HMGB1</td>
<td>SIRT1 deacetylates HMGB1 and negatively regulates the nuclear export of HMGB1 (Hwang et al., 2015)</td>
</tr>
<tr>
<td>Other</td>
<td>SIRT1 down-regulates lncRNA-CCL2 and then reduces the expression of inflammatory cytokines (Jia et al., 2018)</td>
</tr>
<tr>
<td></td>
<td>SIRT1 inhibits the NLRP3/IL-1β axis in the hippocampus of septic mice (Sui et al., 2016)</td>
</tr>
</tbody>
</table>

Table 4 Signaling pathways involved in SIRT1 and sepsis.