Aliskiren improves renal morphophysiology and inflammation in Wistar rats with 2K1C renovascular hypertension

Authors: Priscila G. Pereira, Kissila Rabelo, Jemima F. R. da Silva, Bianca T. Ciambarella, Juliana G. C. Argento, Ana L. R. Nascimento, Aline B. Vieira and Jorge J. de Carvalho

DOI: 10.14670/HH-18-173
Article type: ORIGINAL ARTICLE
Accepted: 2019-10-18
Epub ahead of print: 2019-10-18

This article has been peer reviewed and published immediately upon acceptance. Articles in “Histology and Histopathology” are listed in Pubmed.
Pre-print author’s version
Aliskiren improves renal morphophysiology and inflammation in
Wistar rats with 2K1C renovascular hypertension

Running Title: Aliskiren induces renoprotection in 2K1C rats.

Authors: Priscila G. Pereira¹, Kissila Rabelo¹, Jemima F. R. da Silva¹, Bianca T. Ciambarella¹, Juliana G. C. Argento¹, Ana L. R. Nascimento¹, Aline B. Vieira², Jorge J. de Carvalho¹*.

¹ Laboratory of Ultrastructure and Tecidual Biology, Institute of Biology, State University of Rio de Janeiro, RJ, Brazil.
² Ross University School of Veterinary Medicine. Biomedical Department, Basseterre, Saint Kitts.

*Corresponding author address: Jorge José de Carvalho, PhD., Laboratório de Ultraestrutura e Biologia Tecidual, Departamento de Histologia e Embriologia. Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes. Boulevard Vinte e Oito de Setembro - 87 fundos - 3º andar Vila Isabel. CEP: 20551-030 - Rio de Janeiro, RJ – Brasil. E-mail: jjcarv@gmail.com Telephone: 55 21 25876135

Disclosure statements: We declare no competing interests in this work.

Acknowledgements: This study was supported by Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de nível Superior (Capes) and Universidade do Estado do Rio de Janeiro (UERJ).
Abstract

Hypertension is characterized by persistent elevated blood pressure levels, one of the leading causes of death in the world. Renovascular hypertension represents the most common cause of secondary hypertension, and its progress is associated with overactivation of the renin angiotensin aldosterone system (RAAS), causing systemic and local changes. Aliskiren is a renin-inhibiting drug that optimizes RAAS suppression. In this sense, the objective of the present study was to analyze the morphophysiology of the left kidney in Wistar rats with renovascular hypertension after treatment with Aliskiren. Parameters such as systolic blood pressure, urinary creatinine and protein excretion, renal cortex structure and ultrastructure, fibrosis and tissue inflammation were analyzed. Our results showed that the hypertensive animals treated with Aliskiren presented a reestablishment of blood pressure, expression of renin, and renal function, as well as a remodeling of morphological alterations through the reduction of fibrosis. The treatment regulated the laminin expression and decreased pro-inflammatory cytokines, restoring the integrity of the glomerular filtration barrier. Therefore, our findings suggest that Aliskiren has a renoprotective effect acting on the improvement of the morphology, physiology and pathology of the renal cortex of animals with renovascular hypertension.

Keywords: Renovascular hypertension, Aliskiren, Wistar, inflammation, renal histopathology
Introduction

Systemic arterial hypertension is a multifactorial clinical condition characterized by persistent elevated blood pressure levels. The death rate caused by hypertension increased 13.2% within a period of ten years in over 190 countries (Sociedade Brasileira de Cardiologia, 2010). Secondary hypertension is characterized by the existence of an unknown triggering factor, in which renovascular disease is one of the most common causes of secondary hypertension (Pullalarevu et al., 2014). Renovascular hypertension (RH) is described as a partial reduction of renal perfusion pressure, caused by a stenotic or obstructive lesion of one or both renal arteries, leading to an increase in the activity of the renin angiotensin aldosterone system (RAAS) (Ledingham, 1971).

The most used experimental model for the study of the pathogenesis of RH is the prototype of Goldblatt, with the reduction of the renal blood supply. In this model, called 2 Kidney - 1 Clip (2K1C), HR is induced by unilateral partial occlusion, by implantation of a silver clip in the renal artery, causing a reduction in renal blood by approximately 50% and promoting a necessary condition to develop hypertension. Due to the anatomy of the renal arteries, the kidney of choice is usually the left one (Goldblatt et al., 1934; Lupu et al., 1972).

The reduction of renal perfusion caused by artery stenosis results in an increased release of renin by juxtaglomerular cells in the afferent arteriole. This intensification in renin levels leads to the activation of RAAS and a gradual increase in systemic blood pressure, circulating angiotensin II (Ang II) and aldosterone levels, causing renal damage (Minuz et al., 2002). High levels of Ang II cause systemic changes such as increased blood volume, systemic vasoconstriction, activation of the sympathetic nervous system, retention of sodium and water, and local alterations such as oxidative stress, macrophage infiltration, release of pro-inflammatory cytokines, inflammation, dysfunction, and fibrosis in the kidney (Stouffer et al., 2010; Matavelli et al., 2011; Oliveira-Sales et al., 2014). Some studies have associated increased levels of Ang II to increased transcription and synthesis of proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) (Han et al., 1999; Kranzhöfer et al., 1999; Skurk et al., 2004). In patients with hypertension, a higher level of TNF-α and IL-6 has already been demonstrated than in normotensive individuals, suggesting that these cytokines may play a role in the development of hypertension through cellular immune dysfunction and inflammatory reaction (Chae et al., 2001; Bautista et al., 2005; Sardo et al., 2009).
another study, rats with renovascular hypertension two-kidney one-clip (2K1C), showed
greater expression of TNF-α and IL-6 in the plasma through activation of
vasoconstrictors, decreased endothelium-dependent vasodilation function (Van et al.,
1988; Marsden and Brenner, 1992; Conrad and Benyo, 1997), and proliferation of
fibroblasts (Ikeda et al., 1991).

In addition, elevated systemic levels of inflammatory markers are associated with
augmented risk of developing chronic kidney disease (CKD) in humans (Shankar et al.,
2011). CKD is usually associated with advanced age, diabetes, hypertension, obesity and
cardiovascular diseases (Levey et al., 2003). It is characterized by structural damage,
which can progressively induce uremia, and renal failure (Polzin et al., 2000). Renal
damage refers to histopathological abnormalities observed by biopsy or imaging, changes
in urine sedimentation, proteinuria, or plasma and / or urinary creatinine concentrations
(Lamb et al., 2013). In patients with CKD, the goal of treatment of hypertension includes
not only cardiovascular protection, reduction of blood pressure, but also retardation of the
progression of renal disease (Ravera et al., 2006; Sarafidis et al., 2008).

Aliskiren is an oral drug, which inhibits renin by binding to its active site. This
drug directly inhibits plasma renin activity, the initial and limiting step in RAAS, which
results in a complete inhibition of RAAS leading to the decline of Ang II levels (Friedrich
and Schmieder, 2013; Lizakowski et al., 2013). Several clinical studies have shown that
Aliskiren is effective in lowering blood pressure in patients with mild to moderate
hypertension (Chen et al., 2013; Robles et al., 2014), and prevents and / or improves
insulin resistance, aortic endothelial dysfunction and vascular remodeling in hypertensive
rats fed with fructose (Chou et al., 2013). The optimization of RAAS suppression is
difficult to obtain with ACE inhibitors and Ang II receptor blockers. It occurs because
these two classes of antihypertensives activate compensatory mechanisms that result in
the release of renin and increased plasma renin activity. In contrast, Aliskiren neutralizes
any compensatory increase in plasma renin and prevents the formation of both Ang I and
Ang II (Imanishi et al., 2008).

Aliskiren administration has been reported to have beneficial effects on target
organ damage, preventing or treating not only diseases of the cardiovascular system but
also the renal system (Fogari and Zoppi, 2010; Van et al., 2010). Aliskiren has been
shown to be a renoprotective agent for CKD, pointing to efficacy in reducing albuminuria,
proteinuria, plasma renin activity and Ang II (Fisher et al., 2008; Persson et al., 2008;
Lizakowski et al., 2013), as well as suppression of the production of collagens type III and IV and transforming growth factor beta (TGF-β) (Feldman et al., 2008).

Based on the above considerations, here we investigated the morphophysiological effects of treatment with Aliskiren in the left kidney of rats with renovascular hypertension 2K1C. Therefore, we evaluated the kidney histopathology, biochemical parameters and renin expression, since it is essential for the understanding of renal function. Fibrosis, laminin expression and ultrastructural analysis were also investigated. Finally, the productions of pro-inflammatory cytokines were assessed to elucidate the Aliskiren effects to restore the integrity of the glomerular filtration barrier.

Materials and Methods

Animals

All experimental procedures involving animals were approved by the Committee for Ethics in Animal Experimentation of the State University of Rio de Janeiro (n° 019/2017). Forty male Wistar rats were housed in cages with free access to standard commercial feed (Nuvilab, Curitiba, Paraná, Brasil) and water, maintained in temperature controlled environment (21 ± 2 °C) and controlled undergoing reversed light cycle (12-light/dark), in accordance with the Committee’s guidelines.

Induction of renovascular hypertension and experimental groups

For the experiments, 45-day-old Wistar rats were anesthetized with intraperitoneal injection of pentobarbital sodium (40 mg/ kg) and the left renal artery was partially obstructed with a 0.2-mm silver clip according to experimental model 2 Kidneys-1 Clip (2K1C) developed by Goldblatt (1934). Control animals were submitted to the same surgical procedure, with manipulation of the left renal artery, but the clip was not implanted. Four weeks following the surgical procedure were considered as induction of hypertension. Animals were divided in four groups (n = 10): Sham, Sham treated with Aliskiren (Sham+A), 2K1C and 2K1C treated with Aliskiren (2K1C+A). The Aliskiren was administered daily via orogastric gavage in the Sham+A and 2K1C+A groups at a
dose of 10 mg/Kg for four weeks. Sham and 2K1C groups received water by oral gavage to be also handled. The systolic blood pressure (SBP) was measured weekly using the noninvasive method of plethysmography of the caudal artery (Letica LE 5100, Panlab, Barcelona, Spain) in all experimental groups with conscious animals. The mean of three measurements of each animal was used. Before the experimental period, the SBP was measured in rats with the objective of acclimatizing them and attenuating possible future changes in pressure due to stress.

On the day of euthanasia, eight weeks after the surgical procedure, the rats were anesthetized with intraperitoneal injection of pentobarbital sodium (40 mg/kg) and the blood was removed by cardiac puncture. Then, the left kidneys were collected and fixed in 4% paraformaldehyde for optical analysis or 2.5% glutaldehyde for electron microscopy analysis.

Assessment of renal function

One day before euthanasia, the animals were placed in metabolic cages for 24 h urine collection. Urinary creatinine and protein concentrations were determined accordingly with the manufacturer. All commercial kits used were purchased from Bioclin (Bioclin, Belo Horizonte, Minas Gerais, Brazil).

Morphological analysis

Kidneys fixed with 4% paraformaldehyde were embedded in paraffin and sectioned (5 µm thickness). The slices were stained with Hematoxylin–Eosin (HE) for histopathological analysis or with Picro Sirius Red (PS) for fibrosis detection and then observed under a light microscope equipped with a CCD camera (Olympus BX53 with camera Olympus DP72, Nagano, Chubu, Japan). Twenty random fields were obtained from each slide. The Image-Pro Plus 7.0 program (Media Cybernetics, Silver Springs, Maryland, EUA) was used to quantify the fibrotic areas with a magnification of 20x.
Immunohistochemistry

Antigen retrieval was performed by citrate buffer at pH 6.0 incubation for 30 min at 60 °C. Endogenous peroxidase activity was blocked using 0.3% hydrogen peroxide (H$_2$O$_2$) and non-specific binding of the polyclonal antibodies was blocked by incubation 5% (w/v) BSA. Subsequently, sections were incubated with antibodies, and these reactions were amplified using a biotin–streptavidin system (Dako, Santa Clara, California, USA). Immunoreactive products were visualized using diaminobenzidine (DAB) reagent (Dako) and counter stained with hematoxylin. Control sections were obtained by primary antibody omission. We used anti-TNF-α, anti-TGF-β, anti-renin, anti- laminin, anti-IL-6, and anti-interleucin 10 (IL-10) (dilution 1:100, Santa Cruz Biotechnology, Dallas, Texas, EUA) antibodies. Then, twenty random fields were obtained from each slide and observed under a light microscope. The expression of all markings was quantified using the Image-Pro Plus 7.0 program at a magnification of × 20.

Electron microscopic study

Kidneys were collected, cut into small tissue blocks (1 mm3), and fixed in 2.5% glutaldehyde at 4°C. After postfixation with 2% osmium tetroxide, tissues were dehydrated in increasing series of acetone, and embedded in epoxy resin. Ultrathin sections were double-stained with uranyl acetate and lead. Sections were examined with a JEM1200EX electron microscopy (JEOL, São Paulo, São Paulo, Brasil) at 80 kV.

Statistical analysis

Data were analyzed with GraphPad prism software v 6.0 (San Diego, California, USA) using analysis of one-way ANOVA with Holm-Sidak post-test, except the SBP data, which were analyzed by two-way with Holm-Sidak post-test. The differences between groups were considered statistically significant when values of p < 0.05.
Results

Assessment of systolic blood pressure and renin expression

The rats SBP was measured weekly throughout the experiment (week 0 to week 8). One day prior to performing the surgical procedure, the SBP was measured (week 0). The weeks 1 to 4 refer to the induction period of hypertension and weeks 5 to 8 to the period of Aliskiren treatment. The SBP of the Sham and Sham + A groups remained constant throughout the experiment (Sham: 117.3 ± 5 mmHg, Sham + A: 120.6 ± 5 mmHg) and did not show significant differences between them. On the other hand, SBP of the animals of the 2K1C group increased gradually from week 1 to week 8 (from 136.8 ± 5 mmHg to 205.5 ± 4 mmHg). In the first four weeks, animals in the 2K1C + A group presented a gradual increase in SBP levels (from 142.6 ± 3 mmHg to 193.2 ± 2 mmHg). At week 5, when the Aliskiren administration was started, the animals in the 2K1C + A group presented a reduction in SBP (from 193.2 ± 2 mmHg to 150.4 ± 5 mmHg) and in week 7, the SBP levels of these animals were similar to the SBP levels of the Sham and Sham + A (123.2 ± 3 mmHg) animals (Figure 1A).

In an immunohistochemical study, positive anti-renin antibody immunostaining was observed in the juxtaglomerular cells of the renal cortex in all experimental groups (Figure 1B-E). The 2K1C group (Figure 1D) showed more positive areas, both in the juxtaglomerular cells and in the tubular region, compared to the Sham (Figure 1B) and Sham + A (Figure 1C) groups. On the other hand, a decrease in the positive areas was observed in the 2K1C group treated with Aliskiren (Figure 1E) compared to the 2K1C group. By quantifying the anti-renin antibody, a significant increase in the number of cells marked in the 2K1C group was observed in relation to the other groups, as shown in Figure 1F.

Assessment of renal function

Urinary levels of creatinine and total proteins were evaluated in the animals of the four experimental groups (Figure 2). Urinary protein levels showed a significant increase in the 2K1C group compared to the Sham, Sham + A and 2K1C + A groups (Figure 2A). The results regarding urinary creatinine levels showed a significant decrease in their excretion in the 2K1C group when compared to the other groups (Figure 2B).
Histopathological evaluation and quantification of areas of fibrosis

Histopathological changes were analyzed by HE staining. The groups Sham and Sham + A presented Bowman's capsule, glomeruli and proximal and distal convoluted tubules preserved. However, the 2K1C group presented a large area of interstitial fibrosis in the renal cortex and loss of structure of the corpuscles and renal tubules. In addition, the animals of the 2K1C group presented glomeruli lesion. The 2K1C + A group showed a decrease in interstitial fibrosis and a restructuring of the renal cortex when compared to the 2K1C group, mainly of the corpuscles and proximal and distal convoluted tubules (Figure 3A).

The deposition of collagen fibers was analyzed by Picro Sirius Red staining (Figure 3A) and after, quantified (Figure 3B). The 2K1C group showed an increase in perivascular, peritubular and pericapsular collagen expression compared to the Sham and Sham + A groups, indicating fibrosis in the 2K1C group. In the 2K1C + A group a lower collagen deposition was observed, compared to the 2K1C group. The amount of collagen in the treated 2K1C group was very close to the results found in the animals of the Sham group.

Evaluation of laminin expression and renal ultrastructure

In the evaluation of the anti-laminin antibody immunostaining, the 2K1C group (Figure 4C) presented more areas with intense labeling in both the glomerular and tubular region compared to Sham (Figure 4 A) and Sham + A (Figure 4 B), which had few labeled cells. In the 2K1C group treated with Aliskiren (Figure 4 D), a decrease of this marking was observed compared to the 2K1C, and similar to the Sham group. By quantifying the laminin expression, a significant increase in the number of labeled cells in the 2K1C group was observed in relation to the other groups, as shown in Figure 4E.

In the analysis of the renal ultrastructure (Figure 5), the animals of the 2K1C group presented a retraction of the pedicels (arrowhead), morphological alteration of the filtration slit (arrows) and thickening of the glomerular basement membrane (GBM) (asterisks) (Figure 5C) when compared to the Sham (Figure 5A) and Sham + A groups (Figure 5B). In these, the integrity of the pedicels and the diaphragm of the filtration cleft,
as well as of the BMG and the fenestrated capillary were evidenced. In the Aliskiren-treated 2K1C group, a recovery of the basement membrane structure and pedicle morphology was observed (Figure 5D).

Renal inflammatory response evaluation by immunohistochemistry

In the specific immunostaining for TNF-α and IL-6 (Figure 6A), the Sham and Sham + A groups showed a minor expression of these cytokines. In contrast, the 2K1C group showed diffuse areas of intense labeling of both TNF-α and IL-6 in the proximal and distal tubules. However, these markers were less frequent in the Aliskiren-treated 2K1C group. The quantification of TNF-α and IL-6 is shown in Figures 6A and 6B, respectively, and corroborates the findings described above, with a significant increase in levels of TNF-α and IL-6 in the hypertensive group compared to the other groups.

The detection of IL-10 and TGF-β were also performed by immunohistochemistry (Figure 7A). Both Sham and Sham + A groups showed little intensity in the specific labeling for IL-10 and TGF-β. In IL-10 specific immunostaining, it was observed that the 2K1C + A group showed an increase in the expression of this cytokine compared to the 2K1C group. In the 2K1C group, TGF-β intense labeling was observed both in the proximal and distal tubules, as well as in the glomeruli. However, this marking was less frequent in the Aliskiren-treated 2K1C group. By quantifying immunostaining with anti-IL-10 (Figure 7B) and anti-TGF-β antibodies (Figure 7C), a significant decrease in IL-10 and increase in TGF-β expression was observed in the 2K1C group in relation to the other groups.

Discussion

The 2K1C renovascular hypertension model, developed by Goldblatt in 1934, is widely used for the experimental study of hypertension pathophysiology and antihypertensive drugs (Amat et al., 2014). This model is associated with a reduction of blood flow that, consequently, stimulates a renin secretion leading to an overactivation of RAAS and increased blood pressure. In addition, chronic renal hypoperfusion causes clipped renal atrophy, inflammation, interstitial fibrosis, and tubular damage (Oliveira-Sales and Boim, 2016). In the present study, we observed that left renal artery stenosis
caused elevated systolic blood pressure, loss of renal function, severe fibrosis with tubular
and glomerular basement membrane alterations, in addition to increased renin, laminin
and proinflammatory cytokines expression.

Excessive activation of RAAS has been implicated in the progression of the
total evolution of cardiovascular and renal diseases from the early stages, such as
hypertension, to the later stages, such as microalbuminuria and renal failure. Therefore,
the overactivation of RAAS culminating in excess production of Ang II is largely
responsible for the establishment and development of hypertension and renal injury
(Escobar et al., 2012). For this reason, the RAAS becomes a good target for
antihypertensive therapies and, consequently, for the treatment of renal disease. Therefore, the use of ACE inhibitors, angiotensin receptor blockers and, in recent years,
Aliskiren, a renin inhibitor, are drugs of choice in the clinical treatment of renovascular
hypertension (Riccioni et al., 2009, 2011).

The development of systemic hypertension in 2K1C animals is associated with
increased renin secretion by renal juxtaglomerular cells. It is known that 2K1C
renovascular hypertension is dependent on Ang II with hypersecretion of renin, leading
to the development of systemic arterial hypertension (Kashyap et al., 2016). After the
treatment with Aliskiren, renin expression is normalized, which allowed the control of
the RAAS activity and, consequently, a reduction of the SBP of the 2K1C animals.

Our data showed that the Sham groups treated and not treated with Aliskiren
did not present a significant difference, although it was expected that the treated group
presented a reduction in BP. Muller and Luft (2006) have shown that the direct renin
inhibitor increases renal blood flow at more significant levels than angiotensin converting
enzyme inhibitors. Aliskiren-induced increased renal blood flow may occur in response
to preferential vasodilation of the efferent arteriole due to inhibition of the effect of
angiotensin II on AT 1 receptors located in these arterioles (Kedrah et al, 2012). As a
consequence, the glomerular filtration pressure is reduced and according to the
phenomenon of self-regulation, the urine output will also be reduced, with consequent
increase in plasma volume (Guyton and Hall, 2006). These data corroborate our results
in urine biochemistry where the Sham + A group showed a significant reduction of
urinary volume and slight non-significant reduction of creatinine and urinary protein
parameters.
Our findings showed that treatment with Aliskiren reduced SBP and interstitial fibrosis, improving renal morphology, and decreased TGF-β expression. Aliskiren improved these physiological parameters, playing a renal protective role through the suppression of type III and IV collagen production and reduction of TGF-β expression. This cytokine acts as a mediator key in the progression of the pathologic renal fibrosis through the extracellular matrix production (Bottinger, 2007; Nussberger et al., 2007; Kelly et al., 2007; Feldman et al., 2008). The fibrotic effects of TGF-β can be summarized in two cellular events: apoptosis induction and transition from epithelial to mesenchymal cells. Induction of apoptosis by TGF-β is associated with podocyte depletion, glomerulosclerosis, loss of glomerular or peritubular capillaries, and tubular atrophy (Meier et al., 2007; Cho, 2010).

Laminin is the main component of the basement membrane and connects the cells to the other components of the membrane, as well as modulating cell proliferation, differentiation and motility (Kumar et al., 2013). In our study, a significant increase in laminin synthesis was observed in the 2K1C group. According to other studies, this increase is associated with pathophysiological processes that affect the nephron, such as the progression of mesangial cells and the consequent development of its matrix, causing thickening of the basement membrane (Pinto, 1998). Increased pressure and glomerular filtration in the nephrons causes sclerotic lesions, that is, the replacement of normal tissue by connective tissue, beginning with the accumulation of extracellular matrix (Guyton and Hall, 2006). The mesangial expansion is a consequence of this accumulation, and causes increased deposition of components such as collagen, laminin and fibronectin, due to increased production of these elements and / or decreased degradation (Fioretto and Mauer, 2007).

The renal ultrastructure analysis showed that the animals of the 2K1C group had pedicle retraction, secondary podocyte extensions, loss of glomerular filtration cleft integrity and GBM thickening. This alteration corroborates the increased expression of laminin. Evidence shows that lesions to the podocytes are closely correlated with proteinuria and, consequently, loss of kidney function, since the pedicels are interconnected by a slit diaphragm, which is the main filtration barrier (Pavenstadt et al., 2003; Wartiovaara et al., 2004). In our study, the hypertensive animals treated with Aliskiren showed integrity of the pedicels and the filtration slit, as well as normalization of GBM.
In addition, we demonstrated a reduction in kidney inflammation, by increasing the expression of IL-10, an anti-inflammatory cytokine and decreased expression of TNF-α and IL-6, proinflammatory cytokines, in Aliskiren-treated 2K1C hypertensive rats. IL-10 is a cytokine with important anti-inflammatory properties, such as an inhibition of the production of proinflammatory cytokines and stimulation of anti-inflammatory cells, such as regulatory T cells and macrophages (Moore et al., 2001). A deficiency in IL-10 expression may aggravate the development of CKD through the progression of atherosclerosis (George et al., 2004). In our model of 2K1C hypertension, the hypertensive group showed a decrease in immunostaining by the anti-IL-10 antibody, whereas the hypertensive animals treated with Aliskiren showed an increase in this staining.

In relation to proinflammatory cytokines, our study demonstrated that animals with 2K1C hypertension had increased expression of TNF-α and IL-6, mainly in the tubular region, suggesting that these cytokines may play a role without the development of inflammatory hypertension (Dzielak, 1992; Cottone et al., 1998).

The TNF-α plays an important role in the maintenance of inflammation through the induction of adhesion molecules, chemotactic factors and cytokines, besides acting on the infiltration and activation of macrophages. In rats with renal injury, increased levels of TNF-α were observed mainly in renal tubules and interstitial cells, suggesting that increased cytokine expression is associated with interstitial fibrosis (Taal et al., 2000).

The levels of TNF-α and IL-6 are correlated with the increase and variability of SBP, suggesting that an inflammation may be a mediator between our SBP levels and target organ damage (Kim et al., 2008). Previous studies have shown an increase in the production of inflammatory factors, such as IL-6 and TNF-α in 2K1C hypertensive rats (Matavelli et al., 2011) and in patients with renovascular hypertension (Alhadad et al., 2007). However, 2K1C animals treated with Aliskiren showed a significant reduction in TNF-α and IL-6 marking, suggesting that Aliskiren is able to reduce the inflammatory condition established by renal artery stenosis.

For the evaluation of renal function, creatinine and protein urinary levels were analyzed. Creatinine is an important marker of renal function and is derived primarily from the metabolism of muscle creatine and excreted entirely by the urine, it is not reabsorbed by the body. Therefore, its urinary level decreases when there is a deficiency in renal filtration capacity, suggesting that there is damage to the nephrons (Abensur,
However, treatment with Aliskiren was able to increase creatinine urinary levels close to the animals in the Sham group.

The proteinuria was observed in the animals of the 2K1C group. In the 2K1C group treated with Aliskiren, proteinuria was significantly reduced, matching values found in the Sham group. The presence of protein in the urine, called proteinuria, is toxic to the tubules and can cause tubulointerstitial inflammation and is associated with damage to the kidney through the stimulation of pro-inflammatory effects. Therefore, this biochemical marker is considered a strong parameter to identify the progression of CKD (Gorriz and Martinez-Castelao, 2012). Therefore, these data indicate that treatment with Aliskiren was able to reverse the renal damage caused by artery stenosis in the 2K1C group.

Further studies are necessary to elucidate the mechanism of action of aliskiren, which was a limitation of our work. However, based on our findings, we can hypothesize, mainly because some studies corroborate our findings (Costanzo et al., 2003; Bivol et al., 2008; Baracho et al., 2017; Chalmers et al., 2019). In the 2K1C hypertension model, the elevation of arterial hypertension is observed due to the renin increasing, demonstrating that this is the main route of BP elevation. With the overactivation of the RAAS, there is an increase of Ang II systemic and intra-renal. Renal cells, such as tubular and mesangial cells, have Ang II receptors whose increased effect generates activation of the intracellular cascade of NFκB transcription factor. This factor is involved in the inflammatory process, increasing the transcription of pro-inflammatory cytokines, such as IL-6 and TNF-α. The chronicity of the inflammatory process leads to renal damage, evaluated by the increase of urinary proteins, that stimulates the tissue repair indicated by the increase of TGF-β expression, deposition of laminin and tubular fibrosis. Thus, there is an increase in the thickness of the basement membrane of the nephrons and consequent reduction of protein filtration capacity, as seen in the reduction of creatinine in our model. The administration of Aliskiren, because it acts on renin blockade, decreases systemic Ang II, leading to the inhibition of the cascade of proinflammatory intracellular signaling, reversing the hypertensive effects generated by the 2K1C model.

In conclusion, this study showed that daily treatment with Aliskiren orally promoted the reduction of systemic arterial pressure, reestablished the renal parenchyma and the glomerular filtration barrier, attenuating interstitial fibrosis and decreasing the expression of pro-inflammatory cytokines in the kidney cortex of rats with renovascular
hypertension. In addition, it was able to improve renal function by restoring urinary creatinine protein levels. Therefore, our findings suggest that treatment with Aliskiren is not only a medicine capable of reducing blood pressure, but it also has beneficial effects on the structure and function of the kidney, improving the systemic and local effects caused by renovascular hypertension.

Authors contributions

PP, JF and JC designed the study. PP, KR and JA performed the research experiments for renal evaluation and analyzed the results. AN, JF, BC, AV optimized or supported some experiments. PP wrote the first version of the manuscript. KR, AV and JJC edited the manuscript. All authors gave final approval.

References

HISTOLOGY AND HISTOPATHOLOGY

Figure legends:

Figure 1: Evolution of blood pressure and quantification of renin expression. Evolution of SBP in millimeters of mercury (mmHg) (A). Detection of renin expression by immunohistochemistry in Sham group, (B), Sham +A (C), 2K1C (D) and 2K1C +A (E). Arrows indicate positive immunostaining in juxtaglomerular cells. Quantification of renin expression in juxtaglomerular cells of hypertensive and control groups (F). (a) represents $p <0.05$ compared to the Sham group, (b) represents $p <0.05$ compared to the Sham + A group and (c) $p <0.05$ compared to the 2K1C + A group. n = 10 for all experimental groups. Calibration bar: 100 µm.

Figure 2: Biochemical parameters in urine. (A) urinary protein levels (mg / 24h) and (B) creatinine levels (mg / dL). (a) $p <0.05$ compared to the Sham group, (b) $p <0.05$ compared to the Sham + A group and (c) $p <0.05$ compared to the 2K1C + A group. n = 7 for all experimental groups.

Figure 3: Renal histopathology and quantification of the areas of fibrosis. (A) Coloration in Hematoxylin-Eosin (HE) and Picro Sirius Red (PS) in all groups. (B) Quantification of the fibrotic area. In HE, the arrows indicate the glomeruli and the asterisks indicate areas of interstitial fibrosis. In PS, the arrows indicate areas of deposition of collagen fibers. (a) represents $p <0.05$ compared to the Sham group, (b) represents $p <0.05$ compared to the Sham + A group and (c) $p <0.05$ compared to the 2K1C + A group. n = 10 for all experimental groups. Calibration bar: 100 µm (HE) and 50 µm (PS).

Figure 4: Detection of laminin by immunostaining and quantification in the renal cortex. Photomicrographs of groups (A) Sham; (B) Sham + A; (C) 2K1C; (D) 2K1C + A. (a) represents $p <0.05$ compared to the Sham group, (b) represents $p <0.05$ compared to the Sham + A group and (c) $p <0.05$ compared to the 2K1C + A group. n = 10 for all experimental groups. Calibration bar: 100 µm.
Figure 5: Analysis of renal ultrastructure. (A) Sham group; (B) Sham + A group; (C) 2K1C group; (D) 2K1C + A group. The filtration slit (arrows), the pedicels (arrowheads), the glomerular basement membrane (*) and the podocyte cell body (#) are indicated. Calibration bar: 1 µm.

Figure 6: Immunostaining and quantification of anti-TNF-α and anti-IL-6 antibodies in the renal cortex of the experimental groups. (A) Photomicrographs of all experimental groups are presented. (B, C) Quantification of TNF-α and IL-6 are shown, respectively. (a) p <0.05 compared to the Sham group, (b) p <0.05 compared to the Sham + A group and (c) p <0.05 compared to the 2K1C + A group. n=10 for all experimental groups. The arrows indicate positive immunostaining. Calibration bar: 100 µm.

Figure 7: Detection of TBF-β and IL-10 by immunohistochemistry and quantification. Photomicrographs of all experimental groups are presented in A. Quantification of IL-10 and TGF-β are shown in B and C respectively. (a) p <0.05 compared to the Sham group, (b) p <0.05 compared to the Sham + A group and (c) p <0.05 compared to the 2K1C + A group. n=10 for all experimental groups. The arrows indicate positive immunostaining. Calibration bar: 100 µm.
A

Systolic Blood Pressure (mmHg)

Weeks

Sham
Sham + A
2K1C
2K1C + A

B

C

D

E

F

Remin (pixel/μm²)

Sham
Sham + A
2K1C
2K1C + A

a.b.c

[Figure showing systolic blood pressure over weeks for different groups, with graphs for Renin expression showing significant differences among groups.]
HISTOLOGY AND HISTOPATHOLOGY

(A) Representative images of IL-10 and TGF-β expression in different groups: Sham, Sham + A, 2K1C, and 2K1C + A. Arrows indicate areas of interest.

(B) Bar graph showing IL-10 expression levels: Sham, Sham + A, 2K1C, and 2K1C + A. Different letters indicate statistical significance.

(C) Bar graph showing TGF-β expression levels: Sham, Sham + A, 2K1C, and 2K1C + A. Different letters indicate statistical significance.