Safety of Isotretinoin Treatment as Measured by Liver Parameters

Authors: Thomazini BF, Lamas CA and Dolder MAH

DOI: 10.14670/HH-18-075
Article type: ORIGINAL ARTICLE
Accepted: 2018-12-17
Epub ahead of print: 2018-12-17
Safety of Isotretinoin Treatment as Measured by Liver Parameters

Thomazini, BF; Lamas CA; Dolder, MAH

Department of Structural and Functional Biology, Biology Institute, University of Campinas, Campinas – SP, Brazil.

*Corresponding author:
Bruna Fontana Thomazini
Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas- UNICAMP
Avenida Bertrand Russel, Bloco N, Zeferino Vaz, Campus- Barão Geraldo. CEP: 13083-865, Campinas – São Paulo – Brasil
Phone: +55 19 35216116
E-mail: bruna.fth@gmail.com

Running Title : A dose dependent study.

Keywords : liver, histology, morphometry, wistar rats
ABSTRACT
Isotretinoin is an analogue of vitamin A and by suppressing the sebaceous glands it is often prescribed in cases of severe acne treatment. The treatment for the average patient is carried out during two to ten months. This study was designed to investigate liver structure, hepatic enzyme levels and the stress oxidative parameter after isotretinoin treatment during a similar period and using the dosages of 1mg/kg and another one of 10mg/kg in young male Wistar rats. We have analyzed the blood serum biochemical levels to determine hepatic function and lipid peroxidation, hepatic tissue levels of hepatic enzymes, histology and ultrastructure. The groups receiving 1mg/kg were not altered after treatment. Their ultrastructure showed a metabolically more active organ after treatment with 10mg/kg, in which there was an increase in the area occupied by mitochondria and rough reticulum in electron transmission images. The group that received 10mg/kg also showed increased alkaline phosphatase, decreased high density lipoprotein and low density lipoprotein. The changes observed with the 10mg/kg dose were not conclusive for liver damage, because of the lack of histological structural modifications and the few biochemical alterations. The 1mg/kg dose showed a liver responding to some stimuli but without profound alterations. So, we confirm that the proposed protocol with 1mg/kg or 10mg/kg isotretinoin did not cause important biochemical and histological disfunctions for male Wistar rat livers.
INTRODUCTION

Isotretinoin is a member of the Vitamin A family that is a highly effective therapeutic agent for acne treatment. Vitamin A is a retinol, a fat soluble molecule with potent effects on epithelium tissue growth and differentiation and is critical to the proper maintenance of epithelial integrity and structure (Hardman et al., 1996; Jacob et al., 2001; Madeira et al., 2012). Isotretinoin acts reducing sebaceous gland size by decreasing the proliferation of basal sebocytes. This action suppresses sebum production and inhibits sebocyte differentiation (Zouboulis et al., 1991).

Isotretinoin is one of the most effective drugs for acne vulgaris treatment and has a positive effect when we consider that less than 1% of patients have a relapse after one cycle employing the appropriate dosage (Diniz et al., 2002; Charakida et al., 2004; Sampaio, 2008; Rigopoulos et al., 2010; Vieira et al., 2012; Owen, 2014). This substance is also indicated for the treatment of rosacea, gram-negative folliculitis, lupus erythematosus, sebaceous hyperplasia, psoriasis and others diseases (Lowenstein and Lowenstein, 2011). The determination of this dosage depends on various factors but the usual dosage recommended is 0.5-1.2mg/kg/day for two to ten months (Diniz et al., 2002; Charakida et al., 2004; Sampaio, 2008; Brito et al., 2010; Brzezinski et al., 2017). The once daily dose seems to be more convenient and therefore encourages more patient compliance (Ahmad, 2015). Previous authors indicate that the cumulative dose is more important than the daily dose to achieve and maintain remission of the disease (Vieira et al., 2012).

Isotretinoin shows great therapeutic efficiency in induction of epithelial differentiation, and mucus secreting tissue. The inhibition of sebum production by isotretinoin is a determining factor for its pharmacological activity in the treatment (Allen and Bloxham, 1989; Saurat, 1997; Diniz et al., 2002; Sampaio, 2008; Alli and Yorulmaz, 2015; Kizlyel et al., 2014).

The treatment with retinoids, including isotretinoin, may lead to alterations of liver enzyme and lipid levels. The most common laboratory findings after oral isotretinoin treatment is hypertriglyceridemia (Lowenstein and Lowenstein, 2011). Other effects may include increased serum levels of liver enzymes, increased total cholesterol, low-density lipoprotein cholesterol and reduced high density lipoprotein cholesterol levels (Nankervis et al., 1995; White, 1999; Lowenstein and Lowenstein, 2011; Vieira et al., 2012; Blasiak et al., 2013; Kizlyel et al., 2014; Owen, 2014; Le et al., 2016).
The effects of isotretinoin treatment, showing higher serum enzyme and lipid profiles, has been linked with liver injuries, as is well described in the literature. However the effect on liver histology is not so well described. In the research literature we did not find previous descriptions of liver histology and ultrastructural effects using the protocol as we proposed. So, the aim of this study was to investigate the effects in the blood serum and liver biochemical analysis, and also on liver histology structure and ultrastructure after treatment with two dosages of isotretinoin solution in young male Wistar rats.

MATERIAL AND METHODS

Experimental groups

Male Wistar rats (*Rattus novergicus*) (n=24) initiated the experimental protocol aged 21 days when were randomly allocated into 4 experimental groups (n=6): C (control with water); D0 (control with soybean oil, the vehicle), D1 (1mg/kg) and D10 (10mg/kg) and maintained until reached 54 days. The protocol was designed to compare the isotretinoin dose dependent effects after 60 days of treatment which is the minimum period used in human treatment. The 1mg/kg dosage is proportional to the frequently applied dosage and the 10mg/kg dosage is still proportional to treatments which have been prescribed besides being higher and not toxic (Rademaker, 2013; Kotori, 2015; Chiu, 2017; Karadag, 2017; Yap, 2017). The experimental protocol with the solutions of isotretinoin diluted in soybean oil (Nankervis et al., 1995) to obtain the desired concentrations started when rats reached 54 days of age with daily gavage for 60 days.

The experiment followed the established ethical standards according to the Brazilian animal protection laws (CEUA/Unicamp/Brazil protocol #2831-1). The rats had free access to rodent food and water and the animal house had controlled luminosity with 12 hours of light/dark and temperature at about 22±1°C.

Blood extraction and plasma biochemistry

After the 60 days of treatment the rats were euthanized with a mixture of 10mg/kg of ketamine and 80mg/Kg of xylazin solutions. After anesthesia, blood was collected from the right ventricle using a vaccuette tube. The blood was immediately centrifuged for 10min at a speed of 3500 rpm at 4°C. The supernatant plasma was collected and frozen at -20°C. The plasma was processed as routine samples to determine the level of the following components: aspartate aminotransferase, alanine aminotransferase, total bilirubin, direct bilirubin, indirect bilirubin, alkaline phosphatase, gamma-glutamyl
transferase, total cholesterol, total triglycerides, high density lipoprotein cholesterol, low
density lipoprotein cholesterol, very-low-density lipoprotein cholesterol, total protein,
albumin, globulin and malondialdehyde.

Liver extraction: Tissue Biochemistry, light and electron microscopies

The liver was collected, the organ mass measured and smaller sections were
prepared. Some fragments were frozen at -80°C, others were processed according to light
microscopy and transmission electron microscopy routines.

Light microscopy routines were the usual ones for paraffin and glycol
methacrylate Leica® embedding. The samples embedded in glycol methacrylate were
sectioned with 2µm thickness (8 sections and distance of 30µm between them) and
stained with Hematoxilin-Eosin, for morphometry data. The samples embedded in
paraffin were sectioned at 5µm thickness (8 sections and distance of 30 µm between them)
stained with Masson’s Trichrome, to observe the distribution of connective tissue,
epithelium and muscle, or employing the combination of Periodic Acid Schiff (PAS) with
Alcian Blue (AB) pH 2.5 (PAS+AB) (Alcian Blue pH 2.5-PAS®, EasyPath) to show
areas with mucin deposition, or with Reticulin (Reticulina®, EasyPath) to reveal reticulin
fiber distribution and structure. For transmission electron microscopy, the usual routine
for Epon® embedding was employed. This tissue was sectioned at a thickness of 70nm
and was typically stained with uranyl acetate followed by lead citrate.

To investigate the oxidative stress level and liver integrity we measured the
following enzyme or protein levels in liver tissue samples: Superoxide Dismutase
(Superoxide Dismutase Assay Kit Cayman Chemicals® Cat #706002), Catalase (Catalase
Assay kit- Sigma Aldrich® Cat #100-1KT), Alkaline Phosphatase (Fosfatase Alcalina
Bioclin® Cat #K019), Total Glutathione (Kit Sigma Aldrich Glutathione Assay®
Cat#CS0260- 1KT), Gamma-Glutamyl Transferase (Gama Glutamil Transferase
Laborlab® Cat#09900), Aspartate Aminotransferase (Transaminase Oxalacética
InVitro® Cat #015), Alanine Transaminase (Transaminase Pirúvica InVitro® Cat #016),
Bradford protein assay (Bio-Rad Protein Assay® Cat #500-0006) and Malondialdehyde
(TBars Assay Kit Cayman Chemicals® Cat #10009055).

Qualitative and quantitative observations

Images of liver samples stained with Hematoxilin and Eosin were captured at 400x
magnification and 10 aleatory fields were selected. These fields were located around the
centrilobular vessel for all animals. Using the software Image Pro Plus® (Media Cybernetics, version 4.5.0.29), the cell height and nuclear diameter of 30 hepatocytes were measured. In the same fields, a grid mask with 266 intersections was applied, quantifying a total of 2660 intersections per animal. Each intersection was classified according to the following parameters: binuclear and mononuclear hepatocytes, cytoplasm area, connective tissue, sinusoid vessels, connective tissue cells, lipid droplets and blood vessels. Thus, based on the total number of intersections per animal these parameters were quantified and expressed as relative percentage.

For samples stained with Masson’s Trichrome, AB+PAS and Reticulin, we performed a qualitative evaluation observing tissue structure and organization. Using transmission electron microscopy, we performed a more specific evaluation observing the connective tissue components as well as the cytoplasmic organelles, endoplasmic reticulum, mitochondria and Golgi complex morphology, distribution and frequency.

Statistical Analysis

For multiple comparison, we applied the Kruskal-Wallis test followed by Dunn’s post test. The level of significance applied was p < 0.05. We used Minitab® 16 program (LEAD Technologies, Inc. Charlotte, North Carolina) and the data are presented as mean ± standard deviation in the tables.

RESULTS

There were no significant macroscopic alterations in the liver, observed after euthanasia (Table 1). The morphometrical parameters of hepatocytes showed no difference after the treatment protocol (Table 1 and Fig. 1). The frequency of hepatocytes, cytoplasm areas, connective tissue, blood vessels, connective tissue cells and lipid droplets showed no difference among the groups (Table 1, Fig. 1). The biochemical evaluation of liver tissue (Table 2) showed a decrease in Superoxide Dismutase in the D1 group in relation to C group, and an increase in Alkaline phosphatase in the D10 group in relation to the D0 control. The other enzymes, Total Glutathione, Gamma-Glutamyl Transferase, Aspartate Aminotransferase, Alanine Transaminase showed no significant difference. Protein quantification based on the Bradford method showed no variation, as was also found for lipid peroxidation based on malondialdehyde determination.

Serum biochemical analysis (Table 2) showed changes related to the D10 group. We observed increased triglyceride and very low density lipoprotein levels in relation to
the D0 control. A decrease in high density lipoprotein and low density lipoprotein levels in D10 in relation to the controls C and D0 was also observed. For plasma protein, a decrease in the D10 group of total proteins and albumin occurred in relation to the control D0. The D1 group showed fewer modifications and they are related to an increase of alkaline phosphatase and a decrease of gamma glutamyl transferase in relation to the control C.

The stain analyses showed no tissue organization difference among the groups (Fig. 1). Transmission electron microscopy showed the expected distribution of cytoplasmic elements and some changes related to the treatment. A higher area of rough endoplasmic reticulum and mitochondria was observed as being dose dependent, increasing in D10 group in relation to D1 group. Lipid droplet distribution and the area they occupied, tight junctions, defense cells, and connective tissue elements showed no qualitative difference in morphology or distribution among the groups (Fig. 2).

DISCUSSION

In general, the treatment with isotretinoin has been claimed to cause alterations in blood serum levels of liver enzymes and lipid particles increasing serum levels of liver enzymes, triglycerides, total cholesterol and low-density lipoprotein, and it may reduce the level of high-density lipoprotein (Shalita et al., 1983; Tallab et al., 2004; Beneret et al., 2009; Owen, 2014; Rademaker, 2016, DeKlotz et al., 2017). In our study we did not observe modification in the liver enzymes and parameters which could indicate liver damage, as was also demonstrated in the gastrointestinal tract analysis (Thomazini and Dolder, 2017a; Thomazini and Dolder, 2017b). Previous authors observed the protein supplementation concomitant to isotretinoin treatment and showed that the liver transaminases alterations were due to the supplementation rather than the treatment (DeKlotz et al., 2017). The maintenance of protein parameters and lipid peroxidation indicates that the protocol for this study was not sufficient to cause biochemical liver injuries. It is important that this occurred with both dosages, so even a higher dosage was not enough to cause this kind of injury. On the other hand, increased alkaline phosphatase and a decrease of gamma-glutamyl transferase were observed for D1 in relation to C. The increase of alkaline phosphatase levels can indicate canalicular liver damage and liver inflammation, although not following a linear scale. We found a decrease in tissue level of gamma-glutamyl transferase in D1 in relation to the C group.
Previous authors (Vu-Dac N et al., 1998; Rodondi et al., 2002; Sedova et al., 2004; de Marchi et al., 2006; Vieira et al., 2012; Kızılyel et al., 2014) demonstrated that the increase in triglyceride levels in patients being treated with oral isotretinoin may be related to a reduction in the removal rate of these lipids from the plasma. According to these authors, it also appears to be influenced by the increase in gene expression for Apo E (Vu-Dac N et al., 1998; Rodondi et al., 2002; Sedova et al., 2004; de Marchi et al., 2006; Vieira et al., 2012). The increase of triglyceride levels in the D10 group is in accordance with the literature that affirms this tendency (Tabanlioğlu Onan et al., 2016).

It is interesting to observe that the most commonly suggested dosage of 1mg/kg did not alter any lipid levels in male Wistar rats. Saied and Hamza (2014) treated rats with isotretinoin and selenium and observed that the exposure to isotretinoin increased serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, cholesterol, triglycerides, and high-density lipid content. The authors also showed a significant rise in thiobarbituric acid reacting substance and nitric oxide content with concomitant decrease in reduced glutathione and the antioxidant enzyme activities of superoxide dismutase and catalase in liver tissue after daily isotretinoin exposure at the dosage of 7.5mg/kg for 28 days. Another study using vitamin A tablets as acne treatment in 50 patients showed elevated serum lipid levels in 4.2% of the patients and abnormal liver tests in 4.8% (Kotori, 2015).

The increase of triglyceride levels in D10 was expected, based on the literature but the decrease of low density lipoprotein and high density lipoprotein are not in accordance with what is known for the retinoid treatments. The very low density lipoprotein level was found to increase. We believe that this higher concentration is associated to the total triglyceride elevation considering that this protein is related with triglyceride transport in the blood. Previous authors (Bershad et al., 1985; Kaymak et al., 2006; Rademaker, 2016) reported an increase in low density lipoprotein and triglycerides, but a decrease in high density lipoprotein during isotretinoin therapy. These changes in lipid profile also appeared to be transient and returned to baseline level two months following the end of treatment. In another study (Vieira et al., 2012) with 130 patients who were treated with isotretinoin, the authors noted an increase in aspartate aminotransferase, alanine aminotransferase, and triglyceride levels. Most of the studies in the literature that reported effects of isotretinoin on liver enzymes and lipids suggested that the effects were reversible and the patterns followed those already presented in this discussion.
In a previous study with 150 participants, the authors found no statistically significant changes in liver transaminase and lipid levels following usual treatment with isotretinoin (Brito et al., 2010). In another study with 30 participants, the authors reported that triglycerides, low density lipoprotein or high density lipoprotein levels showed no difference with the treatment (Baxter et al., 2003). In another study with 1292 participants, the authors found no increase in serum levels of liver enzymes occurred up to the end of the treatment (Alcalay et al., 2001). Another study found that liver enzymes were less affected than lipids in patients who underwent treatment with isotretinoin (Kızılyel et al., 2014). A study of seven patients with severe rosacea observed increases in serum triglycerides, cholesterol, triglycerides associated with very low density lipoprotein, low density lipoprotein, high density lipoprotein and aspartate aminotransferase. These authors also observed a decrease in bilirubin levels (Marsden et al., 1984). Previous work (Gencoglan et al., 2017) observed hematological parameters during isotretinoin therapy and verified increased platelet and decreased white blood cells in the first month of treatment. Besides these alterations, the authors noted a reestablishment of platelet and white blood cell levels in the second month. Thus, as in the above results, serum alteration due to isotretinoin treatment can occur initially but these soon return to baseline, in approximately 60 days. The lack of significant differences of the liver enzyme level and lipid parameters found for this study are in accordance with the literature that indicates variable effects with the isotretinoin treatment.

The histological analyses of liver sections showed no detectable alteration due to the treatment. Reticulin fibers were distributed as usual in the connective tissue, providing support for the organ. Masson’s Trichrome showed no signs of fibrosis and no sign of mucin accumulation was established by the combination technique of Alcian Blue pH2.5 and PAS. Some previous studies indicated that retinoids suppressed fibrosis induced by CCL4 (Blomhoff, 1997; Okuno et al., 2003; Wang et al., 2007). The absence of fibrosis among the groups is in accordance with the literature (Blomhoff, 1997; Okuno et al., 2003; Wang et al., 2007) and the lack of histological differences in agreement with the other results registered (Thomazini and Dolder, 2017a,b).

Samples submitted to transmission electron microscopy showed evidence of higher liver activity, such as the increased number of mitochondria and of rough endoplasmic reticulum area. The connective tissue components showed no difference, in agreement with previous authors that showed that retinoids do not appear to produce consistent toxic liver abnormalities (Roenigk, 1988). Compiling serum and tissue
biochemistry, which show no hepatotoxicity signs, we have demonstrated that isotretinoin in these two dosages did not cause lasting liver alterations in young male Wistar rats.

The lack of alterations, as assessed by morphometry, is in accordance with the biochemical and ultrastructural results. The proportion of binuclear and mononuclear hepatocytes, cytoplasm area, defense cells and vessels, are not different among the groups. Alterations in the proportion and area occupied by cytoplasmic organelles and normal frequency of binuclear or mononuclear hepatocytes depend on the kind of treatment (Weibel et al., 1969; Areshidze et al., 2013; Petrovova et al., 2013). This reinforces the finding that the treatment with isotretinoin proposed in this protocol does not alter liver structure. In our study, we found no clear signs of alterations of the parameters showing that retinoids do not appear to produce consistent toxic liver abnormalities.

CONCLUSIONS

The treatment with 1mg/kg and 10mg/kg of isotretinoin did not alter significantly the liver tissue and blood serum biochemical parameters related to liver injuries, protein levels and stress oxidative levels. Liver structure did not show differences among the groups. We confirmed that this proposed treatment protocol does not produce consistent liver abnormalities in young male Wistar rats.

CONFLICT OF INTEREST

The authors declare that there are no conflicts of interest.

ACKNOWLEDGMENTS

We are grateful to the Brazilian research agencies: CAPES, CNPq and Fapesp (Proc.2016/18201-0) for financial support for this research and Capes and CNPq for the scholarship.

REFERENCES

Table 1: Morphometry and stereology of Wistar rat livers treated with 1mg/kg and 10mg/kg of isotretinoin for 60 days.

<table>
<thead>
<tr>
<th>Groups</th>
<th>C- control with water</th>
<th>D0- control with soybean oil</th>
<th>D1-1mg/Kg of isotretinoin</th>
<th>D10- 10mg/kg of isotretinoin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial body weight (g)</td>
<td>192.82±13.96</td>
<td>193.50±10.17</td>
<td>193.46±15.24</td>
<td>192.78±3.80</td>
</tr>
<tr>
<td>Final body weight (g)</td>
<td>468.43±40.15</td>
<td>459.44±53.34</td>
<td>466.68±22.54</td>
<td>474.25±41.73</td>
</tr>
<tr>
<td>Liver mass (g)</td>
<td>12.89±0.97</td>
<td>12.82±1.44</td>
<td>12.97±1.41</td>
<td>14.21±1.65</td>
</tr>
<tr>
<td>Hepatocyte morphometry and stereology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatocyte diameter (µm)</td>
<td>22.25±8.11</td>
<td>21.54±1.44</td>
<td>21.33±0.31</td>
<td>22.51±1.13</td>
</tr>
<tr>
<td>Hepatocyte nuclear diameter (µm)</td>
<td>9.39±3.34a</td>
<td>7.18±0.58ab</td>
<td>6.85±0.53b</td>
<td>7.63±0.68ab</td>
</tr>
<tr>
<td>Liver stereology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binuclear hepatocyte (%)</td>
<td>0.30±0.25</td>
<td>0.20±0.10</td>
<td>0.17±0.09</td>
<td>0.08±0.10</td>
</tr>
<tr>
<td>Mononuclear hepatocyte (%)</td>
<td>5.83±0.66</td>
<td>5.43±0.61</td>
<td>6.05±1.36</td>
<td>4.80±0.63</td>
</tr>
<tr>
<td>Cytoplasmic (%)</td>
<td>90.53±1.84</td>
<td>90.03±3.45</td>
<td>91.18±1.30</td>
<td>92.28±2.25</td>
</tr>
<tr>
<td>Connective tissue (%)</td>
<td>1.44±0.85</td>
<td>2.23±2.00</td>
<td>1.01±0.35</td>
<td>0.95±0.75</td>
</tr>
<tr>
<td>Sinusoid vessel (%)</td>
<td>0.86±0.50</td>
<td>1.00±0.55</td>
<td>0.86±0.56</td>
<td>0.80±0.74</td>
</tr>
<tr>
<td>Connective tissue cell (%)</td>
<td>0.22±0.09</td>
<td>0.14±0.11</td>
<td>0.21±0.12</td>
<td>0.24±0.13</td>
</tr>
<tr>
<td>Lipid droplets (%)</td>
<td>0.06±0.09</td>
<td>0.23±0.24</td>
<td>0.09±0.12</td>
<td>0.02±0.05</td>
</tr>
<tr>
<td>Blood vessel (%)</td>
<td>0.75±0.98</td>
<td>0.74±0.78</td>
<td>0.43±0.59</td>
<td>0.82±1.00</td>
</tr>
</tbody>
</table>

Mean ± standard deviation. Averages in the same row followed by different letters differ statistically by the Kruskal-Wallis test followed by Dunn’s post test at a 5% significance level.
Table 2: Liver tissue and blood serum biochemical analysis in male Wistar rats after 60 days of treatment with 1mg/kg and 10mg/kg of isotretinoin.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Liver tissue biochemistry</th>
<th>Blood serum biochemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C- control with water</td>
<td>D0- control with soybean oil</td>
</tr>
<tr>
<td></td>
<td>AF (U/L)</td>
<td>73.27±12.96</td>
</tr>
<tr>
<td></td>
<td>ALT (U/mL)</td>
<td>63.52±7.65</td>
</tr>
<tr>
<td></td>
<td>AST (U/mL)</td>
<td>94.41±13.31</td>
</tr>
<tr>
<td></td>
<td>Brad (µgptn/µl)</td>
<td>0.24±0.04</td>
</tr>
<tr>
<td></td>
<td>CAT (U/mL)</td>
<td>31077±2999</td>
</tr>
<tr>
<td></td>
<td>GGT (U/L)</td>
<td>48.89±4.98</td>
</tr>
<tr>
<td></td>
<td>GLUT (nmoles/mL)</td>
<td>27.46±543.25</td>
</tr>
<tr>
<td></td>
<td>MDH</td>
<td>27.14±8.09</td>
</tr>
<tr>
<td></td>
<td>SOD (U/mL)</td>
<td>0.14±0.03</td>
</tr>
</tbody>
</table>

Mean ± standard deviation. Averages in the same row followed by different letters differ by the Kruskal-Wallis test followed by Dunn’s post test at 5 % significance level.

AF: Alkaline Phosphatase; ALT: Alanine Transaminase; AST: Aspartate Aminotransferase; Brad: Bradford protein assay; CAT: Catalase; COL: total cholesterol; DB: direct bilirubin; GGT: Gamma-Glutamyl Transferase; GLOB: globulin; Glut: Total Glutathione; HDL: high density lipoprotein cholesterol; IB: indirect bilirubin; LDL: low density lipoprotein cholesterol; MDH: Malondialdehyde; SOD: Superoxide Dismutase; TB: total bilirubin; TP: total protein; TRIG: total triglycerides; VLDL: very low density lipoprotein.
Figure 1: Light microscopy images of the liver. a-d: Hematoxilin-Eosin staining. In image a, we have the control group, chosen as an example to show the usual histological structures of liver. The thin arrow indicates a mononuclear hepatocyte; the thicker arrow indicates a binuclear hepatocyte. The arrowhead indicates a defense cell in the connective tissue. The asterisk (*) indicates the lymphatic space. b: group D0; c: group D1; d: Group D10. e: Reticulin in the control group. The arrows indicate the fibers providing support for the tissue and around the central vein of the liver lobule. f: combination technique of PAS+AB in the control group. The arrow indicates the usual glycogen deposit in hepatocyte cytoplasm. Bar: 50µm.

Figure 2: Transmission Electron Microscopy. a: group C (control group with water); b: group D1 (1mg/kg of isotretinoin); c: group D0 (control group with soybean oil); d-e: group D10 (10 mg/kg of isotretinoin). In the control group image, the arrow indicates the bile canalicular duct; the arrowhead indicates mitochondria; the asterisk (*) indicates an area with rough endoplasmic reticulum; N: nucleus. The dose dependent increase of mitochondria and rough endoplasmic reticulum frequency can be observed.